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Unit-I  

  

Software definition.  

  

  

Software is (1) instructions (computer programs) that when executed provide 

desired function and performance, (2) data structures that enable the programs to 

adequately manipulate information, and (3) documents that describe the operation 

and use of the programs.  

  

Software Characteristics.  

  

  

Software has characteristics that are considerably different than those of hardware:  

1. Software is developed or engineered, it is not manufactured in the classical  

  

sense.  Although  some  similarities  exist  between  software  development  and  

  

hardware manufacture, the two activities are fundamentally different. In both  

  

 
activities, high quality is achieved through good design, but the manufacturing phase 

for hardware can introduce quality problems that are nonexistent (or easily corrected) 

for software. Both activities are dependent on people, but the relationship between 



 

 

people applied and work accomplished is entirely different. Both activities require the 

construction of a "product" but the approaches are different. Software costs are 

concentrated in engineering. This means that software projects cannot be managed as if 

they were manufacturing projects.  

  

2. Software doesn't "wear out."  

  

  

Figure 1.1 depicts failure rate as a function of time for hardware. The relationship, 

often called the "bathtub curve," indicates that hardware exhibits relatively high 

failure rates early in its life (these failures are often attributable to design or 

manufacturing defects); defects are corrected and the failure rate drops to a 

steadystate level (ideally, quite low) for some period of time. As time passes, 

however, the failure rate rises again as hardware components suffer from the 

cumulative affects of dust, vibration, abuse, temperature extremes, and many other 

environmental maladies. Stated simply, the hardware begins to wear out. Software 

is not susceptible to the environmental maladies that cause hardware to wear out. In 

theory, therefore, the failure rate curve for software should take the form of the  

  

“idealized curve” shown in Figure 1.2. Undiscovered defects will cause high failure 

rates early in the life of a program. However, these are corrected (ideally, without 

introducing other errors) and the curve flattens as shown.The idealized curve is a 

gross oversimplification of actual failure models (see Chapter 8 for more 

information) for software. However, the implication is clear—software doesn't wear 

out. But it does deteriorate! This is shown as the “actual curve” in Figure 1.2.  

  

  

During its life, software will undergo change (maintenance). As changes are made, 

it is likely that some new defects will be introduced, causing the failure rate curve to 

spike as shown in Figure 1.2. Before the curve can return to the original steadystate 

failure rate, another change is requested, causing the curve to spike again. Slowly, 

the minimum failure rate level begins to rise—the software is deteriorating due to 

change.  

  

  



 

 

 

  

  

  

  

  

  

  

  

  

  

  

  

  

3. Although the industry is moving toward component-based assembly, most  

  

software continues to be custom built.  

  

  

Consider the manner in which the control hardware for a computer-based product is 

designed and built. The design engineer draws a simple schematic of the digital 

circuitry, does some fundamental analysis to assure that proper function will be 

achieved, and then goes to the shelf where catalogs of digital components exist. Each 

integrated circuit (called an IC or a chip) has a part number, a defined and validated 

function, a well-defined interface, and a standard set of integration guidelines. After 



 

 

each component is selected, it can be ordered off the shelf. As an engineering 

discipline evolves, a collection of standard design components is created. Standard 

screws and off-the-shelf integrated circuits are only two of thousands of standard 

components that are used by mechanical and electrical engineers as they design new 

systems. The reusable components have been created so that the engineer can 

concentrate on the truly innovative elements of a design, that is, the parts of the 

design that represent something new. In the hardware world, component reuse is a 

natural part of the engineering process. In the software world, it is something that 

has only begun to be achieved on a broad scale. A software component should be 

designed and implemented so that it can be reused in many different programs.  

  

Software myths:  

  

  

Unlike ancient myths that often provide human lessons well worth heeding, software 

myths propagated misinformation and confusion. Software myths had a number of 

attributes that made them insidious; for instance, they appeared to be reasonable 

statements of fact (sometimes containing elements of truth), they had an intuitive 

feel, and they were often promulgated by experienced practitioners who "knew the 

score."  

  

Three types of myths.  

  

  

1) Management myths. Managers with software responsibility, like managers in 

most disciplines, are often under pressure to maintain budgets, keep schedules from 

slipping, and improve quality. Like a drowning person who grasps at a straw, a 

software manager often grasps at belief in a software myth, if that belief will lessen 

the pressure (even temporarily).  

  

a) Myth: We already have a book that's full of standards and 

procedures for building software, won't that provide my people with 

everything they need to know?  

  

Reality: The book of standards may very well exist, but is it used? Are software 

practitioners aware of its existence? Does it reflect modern software engineering 



 

 

practice? Is it complete? Is it streamlined to improve time to delivery while still 

maintaining a focus on quality? In many cases, the answer to all of these questions 

is "no."  

  

b) Myth: My people have state-of-the-art software development tools, 

after all,  

we buy them the newest computers.  

  

Reality: It takes much more than the latest model mainframe, workstation, or PC to 

do high-quality software development. Computer-aided software engineering 

(CASE) tools are more important than hardware for achieving good quality and 

productivity, yet the majority of software developers still do not use them 

effectively.  

  

c) Myth: If we get behind schedule, we can add more programmers 

and catch  

up (sometimes called the Mongolian horde concept).  

  

Reality: Software development is not a mechanistic process like manufacturing. 

Adding people to a late software project makes it later. At first, this statement may 

seem counterintuitive. However, as new people are added, people who were 

working must spend time educating the newcomers, thereby reducing the amount 

of time spent on productive development effort. People can be added but only in a 

planned and well-coordinated manner.  

  

d) Myth: If I decide to outsource3 the software project to a third 

party, I can  

just relax and let that firm build it.  

  

Reality: If an organization does not understand how to manage and control software 

projects internally, it will invariably struggle when it outsources software projects.  

  

2) Customer myths. A customer who requests computer software may be a person 

at the next desk, a technical group down the hall, the marketing/sales department, 

or an outside company that has requested software under contract. In many cases, 

the customer believes myths about software because software managers and 



 

 

practitioners do little to correct misinformation. Myths lead to false expectations (by 

the customer) and ultimately, dissatisfaction with the developer.  

a) Myth: A general statement of objectives is sufficient to begin writing 

programs— we can fill in the details later.  

  

Reality: A poor up-front definition is the major cause of failed software efforts. A 

formal and detailed description of the information domain, function, behavior, 

performance, interfaces, design constraints, and validation criteria is essential. 

These characteristics can be determined only after thorough communication 

between customer and developer.  

  

b) Myth: Project requirements continually change, but change can be easily 

accommodated because software is flexible.  

  

Reality: It is true that software requirements change, but the impact of change 

varies with the time at which it is introduced. Figure 1.3 illustrates the impact of 

change. If serious attention is given to up-front definition, early requests for change 

can be accommodated easily. The customer can review requirements and 

recommend modifications with relatively little impact on cost. When changes are 

requested during software design, the cost impact grows rapidly. Resources have 

been committed and a design framework has been established. Change can cause 

upheaval that requires additional resources and major design modification, that is, 

additional cost. Changes in function, performance, interface, or other characteristics 

during implementation (code and test) have a severe impact on cost. Change, when 

requested after software is in production, can be over an order of magnitude more 

expensive than the same change requested earlier.  

  

  



 

 

 

  

  

  

  

  

  

  

  

  

  

  

3) Practitioner's myths. Myths that are still believed by software practitioners 

have been fostered by 50 years of programming culture. During the early days of 

software, programming was viewed as an art form. Old ways and attitudes die hard.  

a) Myth: Once we write the program and get it to work, our job is done.  

  

Reality: Someone once said that "the sooner you begin 'writing code', the longer 

it'll take you to get done." Industry data ([LIE80], [JON91], [PUT97]) indicate that 



 

 

between 60 and 80 percent of all effort expended on software will be expended after 

it is delivered to the customer for the first time.  

  

b) Myth: Until I get the program "running" I have no way of assessing its  

quality.  

  

Reality: One of the most effective software quality assurance mechanisms can be 

applied from the inception of a project—the formal technical review. Software 

reviews are a "quality filter" that have been found to be more effective than testing 

for finding certain classes of software defects.  

  

c) Myth: The only deliverable work product for a successful project is the working 

program.   

  

Reality: A working program is only one part of a software configuration that 

includes many elements. Documentation provides a foundation for successful 

engineering and, more important, guidance for software support.  

  

d) Myth: Software engineering will make us create voluminous and  

unnecessary documentation and will invariably slow us down.  

  

Reality: Software engineering is not about creating documents. It is about creating 

quality. Better quality leads to reduced rework. And reduced rework results in faster 

delivery times. Many software professionals recognize the fallacy of the myths just 

described. Regrettably, habitual attitudes and methods foster poor management and 

technical practices, even when reality dictates a better approach.  

  

Software Process:  

A software process can be characterized as shown in Figure  A common process 

framework is established by defining a small number of framework activities that 

areapplicable to all software projects, regardless of their size or complexity.  

  



 

 

  
  

A numberof task sets—each a collection of software engineering work tasks, project 

milestones,work products, and quality assurance points—enable the framework 

activities to be adapted to the characteristics of the software project and the 

requirements of the project team.   

  

Finally, umbrella activities—such as software quality assurance, software 

configuration management, and measurement2—overlay the process 

model.Umbrella activities are independent of any one framework activity and occur 

throughout the process.  

   
  



 

 

  

To determine an organization’s current state of process maturity, the SEI uses an 

assessment that results in a five point grading scheme. The grading scheme 

determines compliance with a capability maturity model (CMM) [PAU93] that 

defines key activities required at different levels of process maturity.   

  

The SEI approach provides a measure of the global effectiveness of a company's 

software engineering practices and establishes five process maturity levels that are 

defined in the following manner:  

  

Level 1: Initial. The software process is characterized as ad hoc and occasionally 

even chaotic. Few processes are defined, and success depends on individual 

effort.  

  

Level 2: Repeatable. Basic project management processes are established 

to track cost, schedule, and functionality. The necessary process discipline is 

in place to repeat earlier successes on projects with similar applications.  

  

Level 3: Defined. The software process for both management and engineering 

activities is documented, standardized, and integrated into an organization wide 

software process. All projects use a documented and approved version of the 

organization's process for developing and supporting software. This level includes 

all characteristics defined for level 2.  

  

Level 4: Managed. Detailed measures of the software process and product quality 

are collected. Both the software process and products are quantitatively understood 

and controlled using detailed measures. This level includes all characteristics 

defined for level 3.  

  

Level 5: Optimizing. Continuous process improvement is enabled by quantitative 

Feedback from the process and from testing innovative ideas and technologies. 

This level includes all characteristics defined for level 4.  

  

SOFTWARE PROCESS MODELS:  

  



 

 

To solve actual problems in an industry setting, a software engineer or a team of 

engineers must incorporate a development strategy that encompasses the process, 

methods, and tools layers described in and the generic phases.   

  

This strategy is often referred to as a process model or a software engineering 

paradigm. A process model for software engineering is chosen based on the nature 

of the project and application, the methods and tools to be used, and the controls and 

deliverables that are required.  

  

PRESCRIPTIVE AND SPECIALIZED PROCESS MODELS:  

  

To solve actual problems in an industry setting, a software engineer or a team of 

engineers must incorporate a development strategy that encompasses the process, 

methods, and tools layers described in and the generic phases discussed in This 

strategy is often referred to as a process model or a software engineering paradigm. 

A process model for software engineering is chosen based on the  

nature of the project and application, the methods and tools to be used, and the 

controls and deliverables that are required.  

  

THE LINEAR SEQUENTIAL MODEL:  

  

Sometimes called the classic life cycle or the waterfall model, the linear sequential 

model suggests a systematic, sequential approach5 to software development that 

begins at the system level and progresses through analysis, design, coding, testing, 

and support.  

Figure illustrates the linear sequential model for software engineering. Modeled 

after a conventional engineering cycle, the linear sequential model encompasses 

the following activities:  

  

System/information engineering and modeling: Because software is always part 

of a larger system (or business), work begins by establishing requirements for all 

system elements and then allocating some subset of these requirements to 

software.This system view is essential when software must interact with other 

elementssuch as hardware, people, and databases. System engineering and analysis 

encompass requirements gathering at the system level with a small amount of top 

level  



 

 

 
design and analysis. Information engineering encompasses requirements gathering 

at the strategic business level and at the business area level.  

  

Software requirements analysis: The requirements gathering process is intensified 

and focused specifically on software. To understand the nature of the program(s) to 

be built, the software engineer ("analyst") must understand the information domain 

(described in Chapter 11) for the software, as well as required function, behavior, 

performance, and interface. Requirements for both the system and the software are 

documented and reviewed with the customer.  

  

Design: Software design is actually a multistep process that focuses on four distinct 

attributes of a program: data structure, software architecture, interface 

representations, and procedural (algorithmic) detail. The design process translates 

requirements into a representation of the software that can be assessed for quality 

before coding begins. Like requirements, the design is documented and becomes 

part of the software configuration.  

  

Code generation: The design must be translated into a machine-readable form. The 

code generation step performs this task. If design is performed in a detailed manner, 

code generation can be accomplished mechanistically.  

  

Testing: Once code has been generated, program testing begins. The testing process 

focuses on the logical internals of the software, ensuring that all statements have 

been tested, and on the functional externals; that is, conducting tests to uncover 



 

 

errors and ensure that defined input will produce actual results that agree with 

required results  

.  

Support: Software will undoubtedly undergo change after it is delivered to the 

customer (a possible exception is embedded software). Change will occur because 

errors have been encountered, because the software must be adapted to 

accommodate changes in its external environment (e.g., a change required because 

of a new operating system or peripheral device), or because the customer requires 

functional or performance enhancements. Software support/maintenance reapplies 

each of the preceding phases to an existing program rather than a new one.  

  

  

  

  

THE PROTOTYPING MODEL:  

  

Often, a customer defines a set of general objectives for software but does not 

identify detailed input, processing, or output requirements. In other cases, the 

developer may be unsure of the efficiency of an algorithm, the adaptability of an 

operating system, or the form that human/machine interaction should take. In these, 

and many other situations, a prototyping paradigm may offer the best approach.  

The prototyping paradigm (Figure 2.5) begins with requirements gathering. 

Developer and customer meet and define the overall objectives for the software, 

identify whatever requirements are known, and outline areas where further definition 

is mandatory. A "quick design" then occurs.   

  

  

  



 

 

  
  

The quick design focuses on a representation of those aspects of the software that 

will be visible to the customer/user (e.g. Input approaches and output formats). The 

quick design leads to the construction of prototype.  

The prototype is evaluated by the customer/user and used to refine requirements for 

the software to be developed. Iteration occurs as the prototype is tuned to satisfy the 

needs of the customer, while at the same time enabling the developer to better 

understand what needs to be done.  

Ideally, the prototype serves as a mechanism for identifying software requirements. 

If a working prototype is built, the developer attempts to use existing program 

fragments or applies tools (e.g., report generators, window managers) that enable 

working programs to be generated quickly.  

  

THE RAD MODEL:  

  

Rapid application development (RAD) is an incremental software development 

process model that emphasizes an extremely short development cycle. The RAD 



 

 

model is a “high-speed” adaptation of the linear sequential model in which rapid 

development is achieved by using component-based construction.  

  

Business modeling: The information flow among business functions is modeled in 

a way that answers the following questions: What information drives the business 

Process? What information is generated? Who generates it? Where does the 

informationgo? Who processes it?   

  

Data modeling: The information flow defined as part of the business modeling 

phaseis refined into a set of data objects that are needed to support the business. The 

char-acteristics (called attributes) of each object are identified and the relationships 

betweenthese objects defined.  

  
  



 

 

Process modeling: The data objects defined in the data modeling phase are 

transformedto achieve the information flow necessary to implement a business 

function.Processing descriptions are created for adding, modifying, deleting, or 

retrieving adata object.  

  

Application generation: RAD assumes the use of fourth generation techniques 

Rather than creating software using conventional third generation programming 

languages the RAD process works to reuse existing program components (when 

possible) or create reusable components (when necessary). In all cases, Automated 

tools are used to facilitate construction of the software.  

Testing and turnover: Since the RAD process emphasizes reuse, many of the 

program components have already been tested. This reduces overall testing time. 

However, new components must be tested and all interfaces must be fully exercised  

  

SPECIALI ZED MODELS:  

  

COMPONENT-BASED DEVELOPMENT:  

  

Object-oriented technologies (Part Four of this book) provide the technical 

framework for a component-based process model for software engineering. The 

object oriented paradigm emphasizes the creation of classes that encapsulate both 

data and the algorithms used to manipulate the data. If properly designed and 

implemented, object-oriented classes are reusable across different applications and 

computer-based system architectures.  

  

The component-based development (CBD) model (Figure 2.11) incorporates many 

of the characteristics of the spiral model. It is evolutionary in nature [NIE92], 

demanding an iterative approach to the creation of software. However, the 

component-based development model composes applications from prepackaged 

software components(called classes).  

  

The engineering activity begins with the identification of candidate classes. This is 

accomplished by examining the data to be manipulated by the application and the 

algorithms that will be applied to accomplish the manipulation. Corresponding data 

and algorithms are packaged into a class.  



 

 

  
Once candidate classes are identified, the class library is searched to determine if 

these classes already exist. If they do, they are extracted from the library and reused. 

If a candidate class does not reside in the library, it is engineered using object-

oriented methods (Chapters 21–23). The first iteration of the application to be built 

is then composed, using classes extracted from the library and any new classes built 

to meet the unique needs of the application.  

  

Process flow then returns to the spiral and will ultimately re-enter the component 

assembly iteration during subsequent passes through the engineering activity.  

  

The component-based development model leads to software reuse, and reusability 

Provides software engineers with a number of measurable benefits. Based on studies 

of reusability. Although these results are a function of the robustness of the 

component library, there is little questioning that the component-based development 

model provides significant advantages for software engineers.  

  

The unified software development process [JAC99] is representative of a number of 

component-based development models that have been proposed in the industry.  

Using the Unified Modeling Language (UML), the unified process defines the 

components that will be used to build the system and the interfaces that will connect 

the components. Using a combination of iterative and incremental development, the 

unified process defines the function of the system by applying a scenario-based 



 

 

approach(from the user point of view). It then couples function with an architectural 

framework that identifies the form the the software will take.  

  

THE FORMAL METHODS MODEL:  

  

The formal methods model encompasses a set of activities that leads to formal 

mathematical specification of computer software. Formal methods enable a software 

engineer to specify, develop, and verify a computer-based system by applying a 

rigorous, mathematical notation. A variation on this approach, called cleanroom 

software engineering [MIL87, DYE92], is currently applied by some software 

development organizations.  

  

When formal methods are used during development, they provide a mechanism for 

eliminating many of the problems that are difficult to overcome using other software 

engineering paradigms. Ambiguity, incompleteness, and inconsistency can be 

discovered and corrected more easily, not through ad hoc review but through the 

application of mathematical analysis. When formal methods are used during design, 

they serve as a basis for program verification andtherefore enable the software 

engineer to discover and correct errors that might go undetected.  

  

Although it is not destined to become a mainstream approach, the formal methods 

model offers the promise of defect-free software. Yet, the following concerns 

about its applicability in a business environment have been voiced:  

  

1. The development of formal models is currently quite time consuming and 

Expensive.  

2. Because few software developers have the necessary background to apply formal 

methods, extensive training is required.  

3. It is difficult to use the models as a communication mechanism for technically 

unsophisticated customers.  

These concerns notwithstanding, it is likely that the formal methods approach will 

gain adherents among software developers who must build safety-critical software 

(e.g., developers of aircraft avionics and medical devices) and among developers 

that  

would suffer severe economic hardship should software errors occur.  

  



 

 

SOFTWARE PROJECT MANAGEMENT:  

  

In the early days of computing, software costs constituted a small percentage of the 

overall computer-based system cost. An order of magnitude error in estimates of  

Software cost had relatively little impact. Today, software is the most expensive 

element of virtually all computer-based systems. For complex, custom systems, a 

large cost estimation error can make the difference between profit and loss. Cost 

overrun can be disastrous for the developer. Software cost and effort estimation will 

never be an exact science.   

  

Too many variables—human, technical, environmental, political—can affect the 

ultimate cost of software and effort applied to develop it. However, software project 

estimation can be transformed from a black art to a series of systematic steps that 

provide estimates with acceptable risk.   

  

As an example of LOC and FP problem-based estimation techniques, let us consider 

software package to be developed for a computer-aided design application for 

mechanical components. A review of the System Specification indicates that the 

software is to execute on an engineering workstation and must interface with various 

computer graphics peripherals including a mouse, digitizer, high resolution color 

display and laser printer.  

  

Using the System Specification as a guide, a preliminary statement of software scope 

can be developed:  

  

The CAD software will accept two- and three-dimensional geometric data from an 

engineer. The engineer will interact and control the CAD system through a user 

interface that will exhibit characteristics of good human/machine interface design. 

All geometric data and other supporting information will be maintained in a CAD 

database.   

  

Design analysis modules will be developed to produce the required output, which 

will be displayed one variety of graphics devices. The software will be designed to 

control and interact with peripheral devices that include a mouse, digitizer, laser 

printer, and plotter. For our purposes, we assume that further refinement has 

occurred and that the following major software functions are identified:  



 

 

  

• User interface and control facilities (UICF)  

• Two-dimensional geometric analysis (2DGA)  

• Three-dimensional geometric analysis (3DGA)  

• Database management (DBM)  

• Computer graphics display facilities (CGDF)  

• Peripheral control function (PCF)  

• Design analysis modules (DAM)  

Following the decomposition technique for LOC, an estimation table, shown in 

Figure is developed. A range of LOC estimates is developed for each function. For 

example, the range of LOC estimates for the 3D geometric analysis function is 

optimistic—  

4600 LOC, most likely—6900 LOC, and pessimistic—8600 LOC.  

  
  

  

FP-Based Estimation:  

  

Decomposition for FP-based estimation focuses on information domain values 

rather than software functions. Referring to the function point calculation table 

presented in Figure the project planner estimates inputs, outputs, inquiries, files, and 

external interfaces for the CAD software. For the purposes of this estimate, the 

complexity weighting factor is assumed to be average.  



 

 

  
  

  

Each of the complexity weighting factors is estimated and the complexity adjustment 

factor is computed as described:  

  

Factor Value  

Backup and recovery 4  

Data communications 2  

Distributed processing 0  

Performance critical 4  

Existing operating environment 3  

On-line data entry 4  

Input transaction over multiple screens 5  

Master files updated on-line 3  

Information domain values complex 5  

Internal processing complex 5  

Code designed for reuse 4  

Conversion/installation in design 3  

Multiple installations 5  

Application designed for change 5  

Complexity adjustment factor 1.17  

  

Finally, the estimated number of FP is derived:  

  

FP estimated = count-total x [0.65 + 0.01 x _ (Fi)]  

FP estimated = 375  



 

 

The organizational average productivity for systems of this type is 6.5 FP/pm. 

Basedon a burdened labor rate of $8000 per month, the cost per FP is approximately 

$1230.  

  

Based on the LOC estimate and the historical productivity data, the total estimated 

project cost is $461,000 and the estimated effort is 58 person-months.  

  

COCOMO MODEL:  

  

In this section on “software engineering economics,” Barry Boehm introduced a 

hierarchy of software estimation models bearing the name COCOMO, for  

COnstructive COst MOdel. The original COCOMO model became one of the most 

widely used and discussed software cost estimation models in the industry. It has 

evolved into a more comprehensive estimation model, called COCOMO II [BOE96, 

BOE00].  

  

Like its predecessor, COCOMO II is actually a hierarchy of estimation models that 

address the following areas:  

  

Application composition model: Used during the early stages of software 

engineering, when prototyping of user interfaces, consideration of software and 

system interaction, assessment of performance, and evaluation of technology 

maturity are paramount.  

  

Early design stage model: Used once requirements have been stabilized and 

basic software architecture has been established.  

  

Post-architecture-stage model: Used during the construction of the software.  

Like all estimation models for software, the COCOMO II models require sizing 

information.  

  

Three different sizing options are available as part of the model hierarchy: 

object points function points lines of source code.  

The COCOMO II application composition model uses object points and  

isillustrated in the following paragraphs. It should be noted that other, more  



 

 

 
Sophisticated estimation models (using FP and KLOC) are also available as part of 

COCOMO II.  

Like function points in the object point is an indirect software measure that is 

computed using counts of the number of (1) screens (at the user interface), (2) 

reports, and (3) components likely to be required to build the application. Each 

object instance (e.g., a screen or report) is classified into one of three complexity 

levels (i.e., simple, medium, or difficult) using criteria suggested by Boehm 

[BOE96].  

 In essence, complexity is a function of the number and source of the client and 

server data tables that are required to generate the screen or report and the number 

of views or sections presented as part of the screen or report.  

  

Once complexity is determined, the number of screens, reports, and components are 

weighted according to Table 5.1. The object point count is then determined by 

multiplying the original number of object instances by the weighting factor in Table  

and summing to obtain a total object point count. When component-based 

development or general software reuse is to be applied, the percent of reuse (%reuse) 

is estimated and the object point count is adjusted:  

NOP = (object points) x [(100 _ %reuse)/100] ,where NOP is defined as new object 

points.  

  

To derive an estimate of effort based on the computed NOP value,“productivity  

rate” must be derived. Table 5.2 presents the productivity rate  

PROD = NOP/person-month  



 

 

  
The software equation [PUT92] is a dynamic multivariable model that assumes a 

specific distribution of effort over the life of a software development project. The 

model has been derived from productivity data collected for over 4000 contemporary 

software.  

  

PROJECT SCHEDULING:  

  

You’ve selected an appropriate process model, you’ve identified the software  

Engineering tasks that have to be performed, you estimated the amount of work and 

the number of people, you know the deadline, you’ve even considered the risks. Now 

it’s time to connect the dots.  

That is, you have to create a network of software engineering tasks that will enable 

you to get the job done on time. Once the network is created, you have to assign 

responsibility for each task, make sure it gets done, and adapt the network as risks 

become reality. In a nutshell, that’s softwareproject scheduling and tracking.  

  

 Basic Principles:  

  

The reality of a technical project (whether it involves building a hydroelectric plant 

or developing an operating system) is that hundreds of small tasks must occur to 

accomplish a larger goal. Some of these tasks lie outside the mainstream and may 

be completed without worry about impact on project completion date. Other tasks 

lie on the "critical” path.4 If these "critical" tasks fall behind schedule, the 

completiondate of the entire project is put into jeopardy.  

  

Compartmentalization: The project must be compartmentalized into a number of 

manageable activities and tasks. To accomplish compartmentalization, both the 

product and the process are decomposed.  

  



 

 

Interdependency: The interdependency of each compartmentalized activity or task 

must be determined. Some tasks must occur in sequence while others can occur in 

parallel. Some activities cannot commence until the work product produceds by 

another is available. Other activities can occur independently.  

  

Time allocation: Each task to be scheduled must be allocated some number of work 

units (e.g., person-days of effort). In addition, each task must be assigned a start date 

and a completion date that are a function of the interdependencies and whether work 

will be conducted on a full-time or part-time basis.  

  

Effort validation: Every project has a defined number of staff members. As time 

allocation occurs, the project manager must ensure that no more than the allocated 

number of people has been scheduled at any given time. For example, consider a 

project that has three assigned staff members   

  

Defined responsibilities: Every task that is scheduled should be assigned to 

a specific team member.  

  

Defined outcomes: Every task that is scheduled should have a defined outcome. 

For software projects, the outcome is normally a work product (e.g., the design 

of a module) or a part of a work product. Work products are often combined in 

deliverables.  

  

Defined milestones: Every task or group of tasks should be associated with a 

project milestone. A milestone is accomplished when one or more work 

products has been reviewed for quality and has been approved. Each of these 

principles is applied as the project schedule evolves.  

  

EARNED VALUE ANALYSIS:  

  

we discussed a number of qualitative approaches to project tracking. Each provides 

the project manager with an indication of progress, but an assessment of the 

information provided is somewhat subjective. It is reasonable to ask whether there 

is a quantitative technique for assessing progress as the software team progresses 

through the work tasks allocated to the project schedule. In fact, a technique for 



 

 

performing quantitative analysis of progress does exist. It is called earned value 

analysis (EVA).  

  

Humphrey [HUM95] discusses earned value in the following manner:  

The earned value system provides a common value scale for every [software project] 

task, regardless of the type of work being performed. The total hours to do the whole 

project are estimated, and every task is given an earned value based on its estimated 

percentage of the total. Stated even more simply, earned value is a measure of 

progress.   

It enables us to assess the “percent of completeness” of a project using quantitative 

analysis rather than rely on a gut feeling. In fact, Fleming and Koppleman [FLE98] 

argue that earned value analysis “provides accurate and reliable readings of 

performance from as early as 15 percent into the project. “To determine the earned 

value, the following steps are performed:Wilkens [WIL99] notes that “the 

distinction between the BCWS and the BCWP is that the former represents the 

budget of the activities that were planned to be completed andthe latter represents 

the budget of the activities that actually were completed.” Givenvalues for BCWS, 

BAC, and BCWP, important progress indicators can be computed:  

Schedule performance index, SPI = BCWP/BCWS  

Schedule variance, SV = BCWP – BCWS  

SPI is an indication of the efficiency with which the project is utilizing scheduled 

resources. An SPI value close to 1.0 indicates efficient execution of the project 

schedule.  

SV is simply an absolute indication of variance from the planned schedule. Percent 

scheduled for completion = BCWS/BAC  

provides an indication of the percentage of work that should have been completed 

by time t.  

Percent complete = BCWP/BAC  

provides a quantitative indication of the percent of completeness of the project at a 

given point in time, t.  

It is also possible to compute the actual cost of work performed, ACWP. The value 

for ACWP is the sum of the effort actually expended on work tasks that have been  

completed by a point in time on the project schedule. It is then possible to compute  

Cost performance index, CPI = BCWP/ACWP  

Cost variance, CV = BCWP – ACWP  



 

 

A CPI value close to 1.0 provides a strong indication that the project is within its 

defined budget. CV is an absolute indication of cost savings (against planned costs) 

or shortfall at a particular stage of a project.  

Like over-the-horizon radar, earned value analysis illuminates scheduling 

difficulties before they might otherwise be apparent. This enables the software 

project manager to take corrective action before a project crisis develops.  

  

RISK  MANAGEMENT:  

  

Risk analysis and management are a series of steps that help a software team to 

understand and manage uncertainty. Many problems can plague a software project. 

A risk is potential problem—it might happen, it might not. But, regardless of the 

outcome, it’s a really good idea to identify it, assess its probability of occurrence, 

estimate its impact, and establish a contingency plan should the problem actually 

occur.  

  

REACTIVE VS. PROACTIVE RISK STRATEGIES:  

  

Reactive risk strategies have been laughingly called the “Indiana Jones school of risk 

management” [THO92]. In the movies that carried his name, Indiana Jones, when 

faced with overwhelming difficulty, would invariably say, “Don’t worry, I’ll think 

of something!” Never worrying about problems until they happened, Indy would 

reacting some heroic way.  

Sadly, the average software project manager is not Indiana Jones and the members 

of the software project team are not his trusty sidekicks. Yet, the majority of software 

teams rely solely on reactive risk strategies. At best, a reactive strategy monitors the 

project for likely risks.   

  

Resources are set aside to deal with them, should they become actual problems. More 

commonly, the software team does nothing about risks until something goes wrong. 

Then, the team flies into action in an attempt to correct the problem rapidly. This is 

often called a fire fighting mode. When this fails, “crisis management” [CHA92] 

takes over and the project is in real jeopardy.  

  

A considerably more intelligent strategy for risk management is to be proactive. A 

proactive strategy begins long before technical work is initiated. Potential risks are 



 

 

identified, their probability and impact are assessed, and they are ranked by 

importance.  

  

Then, the software team establishes a plan for managing risk. The primaryobjective 

is to avoid risk, but because not all risks can be avoided, the team worksto develop 

a contingency plan that will enable it to respond in a controlled and effective manner. 

Throughout the remainder of this chapter, we discuss a proactive strategy for risk 

management.  

  

SOFTWARE RISKS:  

Although there has been considerable debate about the proper definition for 

softwarerisk, there is general agreement that risk always involves two 

characteristics.  

Uncertainty—the risk may or may not happen; that is, there are no 100% probable 

risks.1  

• Loss—if the risk becomes a reality, unwanted consequences or losses will 

occur.  

  

RISK IDENTIFICATION:  

  

Risk identification is a systematic attempt to specify threats to the project plan 

(estimates, schedule, resource loading, etc.). By identifying known and predictable 

risks,the project manager takes a first step toward avoiding them when possible and 

controllingthem when necessary. Product size—risks associated with the overall 

size of the software to be builtor modified.  

  

• Business impact—risks associated with constraints imposed by management or 

the marketplace.  

• Customer characteristics—risks associated with the sophistication of the 

customer and the developer's ability to communicate with the customer in a timely 

manner.  

• Process definition—risks associated with the degree to which the software 

process has been defined and is followed by the development organization.  

• Development environment—risks associated with the availability and quality of 

the tools to be used to build the product.  



 

 

• Technology to be built—risks associated with the complexity of the system to 

be built and the "newness" of the technology that is packaged by the system. • Staff 

size and experience—risks associated with the overall technical and project 

experience of the software engineers who will do the work.  

  

Assessing Overall Project Risk:  

  

The following questions have derived from risk data obtained by surveying 

experienced software project managers in different part of the world [KEI98]. The 

questions are ordered by their relative importance to the success of a project.  

  

Risk Components and Drivers he U.S. Air Force [AFC88] has written a pamphlet 

that contains excellent guidelines for software risk identification and abatement. The 

Air Force approach requires that the project manager identify the risk drivers that 

affect software risk componentsperformance, cost, support, and schedule. In the 

context of this discussion, the riskcomponents are defined in the following manner:  

• Performance risk—the degree of uncertainty that the product will meet its 

requirements and be fit for its intended use.  

• Cost risk—the degree of uncertainty that the project budget will be maintained.  

• Support risk—the degree of uncertainty that the resultant software will be easy 

to correct, adapt, and enhance.  

• Schedule risk—the degree of uncertainty that the project schedule will be 

maintained and that the product will be delivered on time.  

  



 

 

 
a characterization of the potential consequences of errors (rows labeled 1) or a 

failureto achieve a desired outcome (rows labeled 2) are described. The impact 

category ischosen based on the characterization that best fits the description in the 

table.  

  

RISK PROJECTION:  

  

Risk projection, also called risk estimation, attempts to rate each risk in two ways—

the  

likelihood or probability that the risk is real and the consequences of the problems 

associatedwith the risk, should it occur.  

  

Developing a Risk Table:  

  

A risk table provides a project manager with a simple technique for risk projection  



 

 

 
Returning once more to the risk analysis approach proposed by the U.S. Air Force 

[AFC88], the following steps are recommended to determine the overall 

consequences of a risk:  

1. Determine the average probability of occurrence value for each risk component.  

2. Using Figure 6.1, determine the impact for each component based on the criteria 

shown.  

3. Complete the risk table and analyze the results as described in the preceding 

sections.  

The overall risk exposure, RE, is determined using the following relationship 

[HAL98]:  

RE = P x C  

Risk Assessment:  

  

At this point in the risk management process, we have established a set of triplets of 

the form [CHA89]:  

[ri, li, xi]  

Where ri is risk, li is the likelihood (probability) of the risk, and xi is the impact of 

the risk. During risk assessment, we further examine the accuracy of the estimates 

that were made during risk projection, attempt to rank the risks that have been 



 

 

uncovered, and begin thinking about ways to control and/or avert risks that are likely 

to occur.  

  

  
RISK REFINEMENT:  

  

This general condition can be refined in the following manner:  

Subcondition 1: Certain reusable components were developed by a third party with 

no knowledge of internal design standards.  

Subcondition 2: The design standard for component interfaces has not been 

solidifiedand may not conform to certain existing reusable components.  

  

Subcondition 3: Certain reusable components have been implemented in a language 

thatis not supported on the target environment.  

  

RISK MITIGATION, MONITORING, AND MANAGEMENT:  

  



 

 

All of the risk analysis activities presented to this point have a single goal—to 

assistthe project team in developing a strategy for dealing with risk. An effective 

strategymust consider three issues:  

• risk avoidance  

• risk monitoring  

• risk management and contingency planning  

  

DATA DICTIONARY:  

  

A data dictionary is a collection of descriptions of the data objects or items in a 

datamodel for the benefit of programmers and others who need to refer to them. A 

first step in analyzing a system of objects with which users interact is to identify 

each object and its relationship to other objects.  

  

When developing programs that use the data model, a data dictionary can be 

consulted to understand where a data item fits in the structure, what values it may 

contain, and basically what the data item means in real-world terms. For example, a 

bank or group of banks could model the data objects involved in consumer banking. 

They could then provide a data dictionary for a bank's programmers. The data 

dictionary would describe each of the data items in its data model for consumer 

banking (for example, "Account holder" and ""Available credit").  

  

  

  

  

  

  

Unit –II  

  

REQUIREMENTS ANALYSIS AND SPECIFICATION  

  

FUMCTIONAL AND NON-FUNCTIONAL REQUIREMENTS:  

  

Software system requirements are often classified as functional requirements, 

nonfunctional requirements or domain requirements:  

  



 

 

I. Functional requirements: These are statements of services the system should 

provide, how the system should! React to particular inputs and how the system 

should behave in particular simulations. In some cases, the functional requirements 

may also explicitly state what the system should not do.  

  

2. Non-functional requirements: These are constraints on the services or functions 

offered by the system. They include timing constraints, constraints on the 

development process and standards. Non-functional requirements often apply to the 

system as a whole.  

  

  
FUNCTIONAL REQUIREMENTS:  

  

The functional requirements for a system describe what the system should do. These 

requirements depend on the type of software being developed, the expected users of 

the software and the general approach taken by the organization when writing 

requirements. When expressed as user requirements, the requirements are usually 

described in a fairly abstract way. However functional system requirements describe 

the system function in detail, its inputs and outputs, exceptions, and so on. 

Functional requirements for a software system may be expressed in a number of 

ways.  

  



 

 

For example, here are examples of functional requirements for a university library 

system called L:"BSYS, used by students and faculty to order books and documents 

from other libraries.  

  

I. The user shall be able to search either all of the initial set of databases or select a 

subset from it.  

2. The system shall provide appropriate viewers for the user to read documents in 

the document store.  

3. Every order shall be allocated a unique identifier (ORDER_ill), which the user 

shall be able to copy to the account's permanent storage area.  

  

These functional user requirements define specific facilities to be provided by the 

system. These have been taken from the user requirements document, and they 

illustrate that functional requirements may be written at different levels of detail 

(contrast requirements I and 3).  

  

The UBSYS system is a single interface to a range of article databases. It allows 

users to download copies of published articles in magazines, newspapers and 

scientific journals.  

  

Imprecision in the requirements specification is the cause of many software 

engineering problems" It is natural for a system developer to interpret an ambiguous 

requirement to simplify its implementation. Often, however, this is not what the 

customer wants. New requirements have to be established and changes made to the 

system  

Of course, this delays system delivery and increases costs. Consider the second 

example requirement for the library system that refers to apocopate viewers provided 

by the system. The library system can deliver documents in a range of formats; the 

intention of this requirement is that viewers for all of these formats should be 

available.   

  

However, the requirement is worded ambiguously; it does not make clear that 

viewers for each document format should be provided. A developer under schedule 

pressure  simply provide a text viewer and claim that  requirement had been met. In 

principle, the functional requirements specification of a system should be both 

complete and consistent. Completeness means that all services required by the user 



 

 

should be defined. Consistency means that requirements should not have 

contradictory definitions. In practice, for large, complex systems, it is practically 

impossible to achieve requirements consistency and completeness.  

  

One reason for this is that it is easy to make mistakes and omissions when writing 

specifications for large, complex systems. Another reason is that different system 

stakeholders have  different-and often inconsistent-needs. These inconsistencies 

may not be obvious when the requirements are first specified, so inconsistent 

requirements are included in the specification.   

.  

  

 NON FUNCTIONAL REQUIREMENTS:  

  

Non-functional requirements, as the name suggests, are requirements that are not 

directly concerned with the specific functions delivered by the system. They may 

relate to emergent system properties such as reliability, response time and store 

occupancy. Alternatively, they may defll1e constraints on the system such as the 

capabilities of VO devices and the data representations used in system interfaces.  

   
  

The types of non-functional requirements are:  

  



 

 

1. Product requirements: These requirements specify product behavior. Examples 

include performance requirements on how fast the system must execute and how 

much memory it requires; reliability requirements that set out the acceptable failure 

rate; portability requirements; and usability requirements.  

2. Organizational requirements: These requirements are derived from policies and 

procedures in the customer s and developer s organization. Examples include process 

standards that must be used; implementation requirements such as the programming 

language or design method used; and delivery requirements that speedy when the 

product and :Its documentation are to be delivered.  

3. External requirements: This broad heading covers all requirements that are 

derived from factors external to the system and its development process. These may 

include interoperability requirements that define how the system interacts 

withsystems in other organizations: legislative requirements that must be followed 

to ensure that the system operates within the law; and ethical requirements. Ethical 

requirements are requirements placed on a system.  

  

USER REQUIREMENTS:  

  

The user requirements for a system should describe the functional and nonfunctional 

requirements so that they are understandable by system users without detailed 

technical knowledge. They should only specify the external behavior of the system 

and should avoid, as far as possible, system design characteristics. Consequently, if 

you are writing user requirements, you should not use software jargon, structured 

notations or formal notations, or describe the requirement by describing thesystem 

implementation. You should write user requirements in simple language, with 

simple tables and forms and intuitive diagrams.  

1. Lack of clarity: It is sometimes difficult to use language in a precise and 

unambiguous way without making the document wordy and difficult to read.  

2. Requirements confusion: Functional requirements, non-functional 

requirements, system goals and design intonation may not be clearly distinguished. 

3. Requirements amalgamation: Several different requirements may be expressed 

together as a single requirement.  

  

SYSTEM REQUIREMENTS:  

  



 

 

System requirements are expanded versions of the user requirements that are 

used by software engineers as the starting point for the system design. They add 

detail and explain how the user requirements should be provided by the system 

The first sentence mixes up three kinds of requirements.  

1. A conceptual, functional requirement states that the editing system should provide 

a grid. It presents a rationale for this.  

2. A non-functional requirement giving detailed information about the grid units 

(centimetres or inches).  

3. A non-functional user interface requirement that defines how the grid is switched 

on and off by the user.  

The requirement in Figure 6.9 also gives some but not all initialization information.  

It defines that the grid is initially off. However, it does not define its units when 

turned on. It provides some detailed information-namely, that the user may 

toggle between units-but not the spacing between grid lines.  

User requirements that include too much information constrain the freedom of  

the system developer to provide innovative solutions to user problems and are 

difficult to understand. The user requirement should simply focus on the key 

facilities to be provided. I have rewritten the editor grid requirement  to focus only 

on the essential system features.  

Whenever possible, you should try to associate a rationale with each user 

requirement. The rationale should explain why the requirement has been included 

and is particularly useful when requirements are changed.   

  

For example, the rationale in Figure recognizes that an active grid where positioned 

objects automatically 'snap' to a grid line can be useful. However, this has been 

deliberately rejected in favor of manual positioning. If a change to this is proposed 

at some later stage, it will be clear that the use of a passive grid was deliberate rather 

than an implementation decision.  

  

To minimize misunderstandings when writing user requirements, I recommend that 

you follow some simple guidelines:  

1. Invent a standard format and ensure that all requirement definitions adhere to that 

format. Standardizing the format makes omissions less likely and requirements 

easier to check. The format I use shows the initial requirement in boldface, including 

a statement of rationale with each user requirement and reference to the more 

detailed system requirement specification.   



 

 

2. Use language consistently. You should always distinguish between mandatory 

and desirable requirements. Mandatory requirements are requirements that the 

system must support and are usually written using 'shall'. Desirable requirements 

are not essential and are written using 'should'.  

3. Use text highlighting (bold, italic or color) to pick out key parts of the 

requirement.  

4. Avoid, as far as possible, the use of computer jargon. Inevitably, however, 

detailed technical tens will creep into the user requirements.  

  

THE SOFTWARE REQUIREMENTS DOCUMENT:  

  

The software requirements document (sometimes called the software requirements 

specification or SRS) is the official statement of what the system developers should  

implement. It should include both the user requirements for a system and a detailed 

specification of the system requirements. In some cases, the user and system  

requirements may be integrated into a single description. In other cases, the user 

requirements are defined in an introduction to the system requirements specification.  

  

If there are a large number of requirements, the detailed system requirements may 

be presented in a separate document. The requirements document has a diverse set 

of users, ranging from the senior management of the organization that is paying for 

the system to the engineers responsible for developing the software.   

  

The diversity of possible users means that the requirements document has to be a 

compromise between communicating the requirements to customers, defining the 

requirements in precise detail for developers and testers, and including information 

about possible system evolution. Information on anticipated changes can help 

system designers avoid restrictive design decisions and help system maintenance 

engineers who have to adapt the system to new requirements.  

  

The level of detail that you should include in a requirements document depends on 

the type of system that is being developed and the development process used. When 

the system will be developed by an external contractor, critical system specifications 

need to be precise and very detailed. When there is more flexibility in the 

requirements and where an in-house, iterative development process is used, the 



 

 

requirements document can be much less detailed and any ambiguities resolved 

during development of the system.  

  
  

REQUIREENTS ENGINEERING PROCESS:  

  

The goal of the requirements engineering process is to create and maintain a system 

requirements document. The overall process includes four high-level requirements 

engineering sub-processes. These are concerned with assessing whether the system 

is useful to the business (feasibility study); discovering requirements (elicitation and 

analysis); converting these requirements into some standard form (specification);and 

checking that the requirements actually define the system that the customer wants 

(validation)  



 

 

  

  

  

  
  

  



 

 

  
  

FEASIBILITY STUDY:  

For all new systems, the requirements engineering process should start with a 

feasibility study. The input to the feasibility study is a set of preliminary business 

requirements, an outline description of the system and how the system is intended to 

support. business processes. The results of the feasibility study should be a report 

that recommends whether or not it is worth carrying on with the requirements 

engineering  and system development process.  

  

A feasibility study is a short, focused study that aims to answer a number of question:  

I. Does the system contribute to the overall objectives of the organisation?  

2. Can the system be implemented using (current technology and within given cost 

and schedule constraints?  

1. Can the system be integrated with other systems which are already in place?  

REQUIREMENTS ELICITATION AND ANALYSIS:  

  



 

 

Requirements elicitation and analysis may involve a variety of people in an 

organization.  

The term stakeholder is used to refer to any person or group who will be affected by 

the system, directly or indirectly. Stakeholders include end-users who interact 

withthe system and everyone else in an organization that may be affected by its 

installation.  

Other system stakeholders may be engineers who are developing or maintaining 

related systems, business managers, domain experts and trade union representatives.  

  
  

1. Requirements discovery :This is the process of interacting with stakeholders in 

the system to collect their requirements. Domain requin:ments from stakeholders 

and documentation are also discovered during this activity.  

2. Requirements classijication and organisation: This activity takes the 

unstructured collection of requirements, groups related requirements and organises 

them into coherent clusters.  



 

 

3. Requirements prioritisation and negotiation: Inevitably, where multiple 

stakeholders  

are involved, requirements will conflict. This a,ctivity is concerned with pnonusmg 

requirements, and finding and resolving requirements conflicts through 

negotiation.  

4. Requirements documentation :The requirements are documented and input into 

the next round of the spiral. Formal or informal requirements documents may be 

produced.  

Requirements discovery:  

Requirements discovery is the process of gathering information about the proposed 

and existing systems and distilling the user and system requirements from this 

information.Sources of information during the requirements discovery phase include 

documentation,system stakeholders and specifications of similar systems. You 

interactwith stakeholders through interviews and observation, and may use scenarios 

andprototypes to help with the requirements discovery.  

  

VIEW POINTS:  

  

Akey strength of viewpoint-oriented analysis is that it recognises multiple 

perspectives and provides a framework for discovering confliicts in the requirements 

proposed by different stakeholders.  

1. Interactor viewpoints : represent people or other systems that interact directly 

with the system. In the bank ATM system, examples of interactor viewpoints are the 

bank's customers and the bank's account database.  

2. Indirect viewpoints: represent stakeholders who do not use the system themselves 

but who influence the requirements in some way. In the bank ATM system, 

examples of indirect viewpoints are the management of the bank and the bank 

security staff.  

3. Domain viewpoints: represent domain characteristics and constraints that 

influence  

the system requirements. In the bank ATM system, an example of a domain 

viewpoint would be the standards that have been developed for interbank 

communications.  



 

 

  
  

INTERVIEWING:  

  

Formal or informal interviews with system stakeholders are part of most 

requirements engineering processes. In these interviews, the requirements 

engineering team puts questions to stakeholders about the system that they use and 

the system to be develped.  

Requirements are derived from the answers to these questions. Interviews may be 

of two types:  

1. Closed interviews where the stakeholder answers a predefined set of questions. 2. 

Open interviews where there is no predefined agenda. The requirements engineering 

team explores a range of issues with system stakeholders and hence develops a better 

understanding of their needs.  

  

SCENARIOS:  

Scenarios can be particularly useful for adding detail to an outline requirements 

description. They are descriptions of example interaction sessions. Each scenario 

covers one or more possible interactions. Several fonns of scenarios have been 

developed,each of which provides different types of information at different levels 

of detail about the system.  

  

USECASES:  

  



 

 

Use-cases are a scenario-based technique for requirements elicitation which were 

first introduced in the Objector method (Jacobsen, et al., 1993). They have now 

become a fundamental feature of the UML notation for describing object-oriented 

system models. In their simplest form, a use-case identifies the type of interaction 

and the actors involved.  

  
REQUIREMENTS VALIDATION:  

  

Requirements validation is concerned with showing that the requirements actually 

define the system that the customer wants. Requirements validation overlaps 

analysis in that it is concerned with finding problems with the requirements. 

Requirements validation is important because errors in a requirements document 

  
ETHNOGRAPHY:   

  

Ethnography  is an observational technique that can be used to  understand social   

and  organizational   requirements. An analyst immerse s him or herself in the  

working   environment   where the system will be used. He:   or she observes the day - 

to - day   work   and notes made of the actual tasks in which participan ts are involved.  

T he value   of   ethnography is that it helps analysts discover im plicit system  

requirements that   reflect   the actual rather than the fin al processes ill which people  

are involved .   



 

 

can lead to extensive rework costs when they are discovered during development 

or after the system is in service.  

  

The cost of fixing a requirements problem by making a system change is much 

greater than repairing design or coding errors. The reason for this is that a change to 

the requirements usually means that the system design and implementation must also 

be changed and then the system must be tested again.  

  

1. Validity checks: A user may think that a system is needed to perform certain 

functions. However, further thought and analysis may identify additional or different 

functions that are required. Systems have: diverse stakeholders with distinct needs, 

and any set of requirements is inevitably a compromise across the stakeholder 

community.  

2. Consistency checks: Requirements in the document should not conflict. That is, 

there should be no contradictory constraints or descriptions of the same system 

function.  

3. Completeness checks: The requirements document should include requirements, 

which define all functions, and constraints intended by the system user.  

4. Realism checks Using knowledge: of existing technology, the requirements 

shouldbe checked to ensure that they could actually be implemented. These checks 

should also take account of the budget and schedule for the system development' 5. 

Verifiability :To reduce the potential for dispute between customer and contractor, 

system requirements should always be written so that they are verifiable. This means 

that you should be able to write a set of tests that can demonstrate that the delivered 

system meets each specified requirement.  

  

REQUIREMENTS MANAGEMENT:  

  

The requirements for large software systems are always changing. One reason for 

this is that these systems are usually developed to address 'wicked' problems   

Because the problem cannot be fully defined, the software requirements are bound 

to be incomplete. During the software process, the stakeholders' understanding of 

the problem is constantly changing. These requirements must then evolve to reflect 

this changed problem view.  

  

ENDURING AND VOLATILE REQUIREMENTS:  



 

 

  

Requirements evolution during the RE process and after a system has gone into 

services inevitable. Developing software requirements focuses attention on software 

capabilities, business objectives and other business systems. As the requirements 

definition is developed, you normally develop a better understanding of users needs.  

  

I. Enduring requirements: These are relatively stable requirements that derive from 

the core activity of the organization and which relate directly to the domain of the 

system.  

2. Volatile requirements: These are requirements that are likely to change during the 

system development process or after the system has been become operational. 

Planning is an essential first stage in the requirements management process.  

  

Requirements management is very expensive. For each project, the planning stage 

establishes the level of requirements management detail that is required. During the 

requirements management stage, you have to decide on:  

  

1. Requirements identification: Each requirement must be uniquely identified so 

that it can be cross-referenced by other requirements and so that it may be used in 

traceability assessments.  

2. A change management process: This is the set of activities that assess the 

impact and cost of changes. I discuss this process in more detail in the following 

section.  

3. Traceability policies: These policies define the relationships between 

requirements, and between the requirements and the system design that should be 

recorded and how these records should be maintained.  

4. CASE tool support :Requirements management involves the processing of large 

amounts of information about the requirements. Tools that may be used range from 

specialist requirements management systems to spreadsheets and simple database 

systems.  

  

  



 

 

REQUIREMENTS CHANGE MANAGEMENT:  

  

  

Requirements change management  should be applied to all proposed changes to the 

requirements. The advantage of using a formal process for change management is 

that all change proposals are treated consistently and that changes to the 

requirements document are made in a controlled way. There are three principal 

stages to a change management process:  

  

1. Problem analysis and change specification: The  process starts with an identified 

requirements problem or, sometimes, with a specific change proposal. During this 

stage, the problem or the change proposal is analyzed to check that it is valid. The 

results of the analysis are fed back to the change requestor, and sometimes a more 

specific requirements change proposal is then made.  

2. Change analysis and costing :The effect of the proposed change is assessed using 

traceability information and general knowledge of the system requirements.  3. 

Change implementation :The requirements document and, where necessary, the 

system design and implementation are modified. You should organize the 

requirements document so that you can make changes to it without extensive 

rewriting or reorganization.  

  

  

  

  

  

CLASSICAL ANALYSIS:  

  

STRUCTURED  SYSTEM ANALYSIS:  

  



 

 

  
  

  

  



 

 

  
  



 

 

  



 

 

  

  



 

 

 

  



 

 

 

 
 



 

 

 



 

 

 



 

 

 



 

 

 



 

 

 
 



 

 

 



 

 

 

 
 



 

 

 
 



 

 

 



 

 

  



 

 

 

 



 

 

 
  

  

  



 

 

  

PETRI NETS:  

  

  

  



 

 

 

 
 



 

 

 
 



 

 

 
 



 

 

 
 



 

 

 



 

 

  
  

  



 

 

  

Unit-III DESIGN CONCEPTS  

  

Software design is the process by which an agent creates a specification of a 

software artifact, intended to accomplish goals, using a set of primitive components 

and subject to constraints.  

  

Design is a meaningful engineering representation of something that is to be built. 

Itcan be traced to a customer’s requirements and at the same time assessed for quality 

against asset of predefined criteria for “good” design. In the software engineering 

context, design focuses on four major areas of concern: data, architecture, interfaces, 

and components. The concepts and principles discussed in this chapter apply to all 

four  

  

DESIGN CONCEPTS:  

  

ABSTRACTION:  

  

When we consider a modular solution to any problem, many levels of abstraction 

can be posed. At the highest level of abstraction, a solution is stated in broad terms 

using the language of the problem environment. At lower levels of abstraction, a 

more procedural orientation is taken. Problem-oriented terminology is coupled with 

implementation-oriented terminology in an effort to state a solution  

  

A procedural abstraction: is a named sequence of instructions that has a specific 

and limited function. An example of a procedural abstraction would be the word 

open for a door. Open implies a long sequence of procedural steps (e.g, walk to the 

door, reach out and grasp knob, turn knob and pull door, step away from moving 

door, etc.).  

  

A data abstraction : is a named collection of data that describes a data object . In the 

context of the procedural abstraction open, we can define a data abstraction called 

door. Like any data object, the data abstraction for door would encompass a set of 

attributes that describe the door (e.g., door type, swing direction, opening 

mechanism, weight, dimensions). It follows that the procedural abstraction open 



 

 

would make use of information contained in the attributes of the data abstraction 

door.  

Control abstraction:  is the third form of abstraction used in software design. Like 

procedural and data abstraction, control abstraction implies a program control 

mechanism without specifying internal details. An example of a control abstraction 

is the synchronization semaphore [KAI83] used to coordinate activities in an 

operating system  

  

Software Architecture :  

Software architecture alludes to “the overall structure of the software and the ways 

inwhich that structure provides conceptual integrity for a system” [SHA95a]. In its 

simplestform, architecture is the hierarchical structure of program components 

(modules),the manner in which these components interact and the structure of data 

thatare used by the components. In a broader sense, however, components can be 

generalized  

  

Structural properties:  

  

This aspect of the architectural design representation defines the components of a 

system (e.g., modules, objects, filters) and the manner in which those components 

are packaged and interact with one another. For example, objects are packaged to 

encapsulate both data and the processing that manipulates the data and interact via 

thevinvocation of methods.  

  

Extra-functional properties:  

The architectural design description should address how the design architecture 

achieves requirements for performance, capacity, reliability, security,adaptability, 

and other system characteristics.  

  

Families of related systems:  

 The architectural design should draw upon repeatable patterns that are commonly 

encountered in the design of families of similar systems.   

  

  



 

 

 
PATTERNS:  

In software engineering, a design pattern is a general reusable solution to a 

commonly occurring problem in software design. A design pattern is not a finished 

design that can be transformed directly into code. It is a description or template for 

how to solve a problem that can be used in many different situations. Objectoriented 

design patterns typically show relationships and interactions between classes or 

objects, without specifying the final application classes or objects that are involved.  

Design patterns reside in the domain of modules and interconnections. At a higher 

level there are architectural patterns that are larger in scope, usually describing an 

overall pattern followed by an entire system.[4]  

There are many types of design patterns: Structural patterns address concerns related 

to the high level structure of an application being developed. Computational patterns 

address concerns related to the identification of key computations. Algorithm 

strategy patterns address concerns related to high level strategies that describe how 

to exploit application characteristic on a computation platform. Implementation 

strategy patterns address concerns related to the realization of the source code to 

support how the program itself is organized and the common data structures specific 

to parallel programming. Execution patterns address concerns related to the support 



 

 

of the execution of an application, including the strategies in executing streams of 

tasks and building blocks to support the synchronization between tasks.  

MODULARITY:  

The concept of modularity in computer software has been espoused for almost five 

decades. Software architecture (described in Section 13.4.4) embodies modularity; 

that is, software is divided into separately named and addressable components, often 

called modules, that are integrated to satisfy problem requirements.  

Let C(x) be a function that defines the perceived complexity of a problem x, and 

E(x) be a function that defines the effort (in time) required to solve a problem x. For 

two problems, p1 and p2, if C(p1) > C(p2) (13-1a) it follows that  

E(p1) > E(p2) (13-1b)  

As a general case, this result is intuitively obvious. It does take more time to solve 

adifficult problem.  

Another interesting characteristic has been uncovered through experimentation 

in human problem solving. That is, C(p1 + p2) > C(p1) + C(p2) (13-2)  

Expression (13-2) implies that the perceived complexity of a problem that combines  

p1 and p2 is greater than the perceived complexity when each problem is considered  

separately. Considering Expression (13-2) and the condition implied by Expressions  

(13-1), it follows that  

E(p1 + p2) > E(p1) + E(p2) (13-3)  

This leads to a "divide and conquer" conclusion—it's easier to solve a complex 

problem when you break it into manageable pieces. The result expressed in 

Expression has important implications with regard to modularity and software. It is, 

in fact, an argument for modularity. It is possible to conclude from Expression  

  



 

 

  
Modular Decomposability: If a design method provides a systematic mechanism 

for decomposing the problem into sub problems, it will reduce the complexity of the 

overall problem, thereby achieving an effective modular solution.  

Modular compensability: If a design method enables existing (reusable) design 

components to be assembled into a new system, it will yield a modular solution that 

does not reinvent the wheel.  

Modular understandability: If a module can be understood as a standalone unit 

(without reference to other modules), it will be easier to build and easier to change.  

Modular continuity: If small changes to the system requirements result in 

changes to individual modules, rather than system wide changes, the impact of 

change-induced side effects will be minimized.  

Modular protection:If an aberrant condition occurs within a module and its 

effects are constrained within that module, the impact of error-induced side 

effects will be minimized.  

  

1. Information Hiding - Modules should be specified and designed so that 

information contained within a module is inaccessible to other modules that 

have no need for such information.  

  

Functional independence:   

The concept of functional independence is a direct outgrowth of modularity and the 

concepts of abstraction and information hiding. In landmark papers on software 



 

 

design Parnas [PAR72] and Wirth [WIR71] allude to refinement techniques that 

enhance module independence. Later work by Stevens, Myers, and Constantine 

[STE74] solidified the concept.  

  

Functional independence is achieved by developing modules with "single-minded" 

function and an "aversion" to excessive interaction with other modules. Stated 

another way, we want to design software so that each module addresses a specific 

sub functionof requirements and has a simple interface when viewed from other parts 

of the program structure.   

  

It is fair to ask why independence is important. Software with effective modularity, 

that is, independent modules, is easier to develop because function may be 

compartmentalized and interfaces are simplified (consider the ramifications when 

development is conducted by a team). Independent modules are easier to maintain 

(and test) because secondary effects caused by design or code modification are 

limited, error propagation is reduced, and reusable modules are possible. To 

summarize, functional independence is a key to good design, and design is the key 

to software quality.  

  

  

1. Refinement - It is the process of elaboration. A hierarchy is developed by 

decomposing a macroscopic statement of function in a step-wise fashion until 

programming language statements are reached. In each step, one or several 

instructions of a given program are decomposed into more detailed 

instructions. Abstraction and Refinement are complementary concepts.  



 

 

 

 

REFACTORING:  

Refactoring is changing a software system by improving its internal structure     

without changing its external behavior, i.e. it is a technique to restructure the code  

in a disciplined way.  

• It makes the software easier to understand and cheaper to modify.  

• To find the bugs  

   It helps in finding the Bugs present in the program.  

• To program faster  

 It helps us to do the coding/programming faster as we have better understanding of 

the situation.  

• When you add a function  

   Helps you to understand the code you are modifying.  

  Sometimes the existing design does not allow you to easily add the feature.  

• When you need to fix a bug  

 If you get a bug report its a sign the code needs refactoring because the code was 

not clear enough for you to see the bug in the first place.  

• When you do a Code Review   

- Code  reviews  help  spread  knowledge  through  the     

 development team.  

- Works best with small review groups  

Properties of Refactoring  

• Preserve Correctness • One step at a time  

• Frequent Testing.  

DESIGN CLASSES:  

  

A design class is a description of a set of objects that share the same responsibilities, 

relationships, operations, attributes, and semantics. 1. User 1.interface classes  



 

 

  These classes are designed for Human Computer Interaction(HCI).  

 

  

These interface classes define all abstraction which is required for Human Computer 

Interaction(HCI).  

2. Business domain classes  

  These classes are commonly refinements of the analysis classes.  



 

 

  These classes are recognized as attributes and methods which are required to implement 

the elements of the business domain.  

3.Process classes:  

It implement the lower level business abstraction which is needed to completely 

manage the business domain class.  

4. Persistence classes:  

It shows data stores that will persist behind the execution of the software.  

5. System Classes:  

System classes implement software management and control functions that allow 
to operate and communicate in computing environment and outside world.  

DESIGN HEURISTIC:  

  

1. The main goal of heuristic evaluations is to identify any problems 

associated with the design of user interfaces. Usability consultant Jakob 

Nielsen developed this method on the basis of several years of experience 

in teaching and consulting about usability engineering.  

  

2. Heuristic evaluations are one of the most informal methods of usability 

inspection in the field of human-computer interaction. There are many sets 

of usability design heuristics; they are not mutually exclusive and cover 

many of the same aspects of user interface design.  

  

3. Quite often, usability problems that are discovered are categorized— often 

on a numeric scale—according to their estimated impact on user 

performance or acceptance. Often the heuristic evaluation is conducted in 

the context of use cases (typical user tasks), to provide feedback to the 

developers on the extent to which the interface is likely to be compatible 

with the intended users’ needs and preferences.  

2.    

3. The simplicity of heuristic evaluation is beneficial at the early stages of design. 

This usability inspection method does not require user testing which can be 



 

 

burdensome due to the need for users, a place to test them and a payment for 

their time. Heuristic evaluation requires only one expert, reducing the 

complexity and expended time for evaluation. Most heuristic evaluations can 

be accomplished in a matter of days. The time required varies with the size of 

the artifact, its complexity, the purpose of the review, the nature of the 

usability issues that arise in the review, and the competence of the reviewers. 

Using heuristic evaluation prior to user testing will reduce the number and 

severity of design errors discovered by users. Although heuristic evaluation 

can uncover many major usability issues in a short period of time, a criticism 

that is often leveled is that results are highly influenced by the knowledge of 

the expert reviewer(s). This “one-sided” review repeatedly has different 

results than software performance testing, each type of testing uncovering a 

different set of problems.  

4.   

ARCHITECHTURAL DESIGN:  

  

Introduction:   

The software needs the architectural design to represents the design of software. 

IEEE defines architectural design as “the process of defining a collection of 

hardware and software components and their interfaces to establish the framework 

for the development of a computer system.” The software that is built for computer-

based systems can exhibit one of these many architectural styles. Each style will 

describe a system category that consists of :  

 A set of components(eg: a database, computational modules) that will perform 

a function required by the system.  

 The set of connectors will help in coordination, communication, and 

cooperation between the components.  

 Conditions that how components can be integrated to form the system.  

 Semantic models that help the designer to understand the overall properties of 

the system.  



 

 

The use of architectural styles is to establish a structure for all the components of the 

system.  

Taxonomy of Architectural styles:  

  

1. There’s a pattern or type of architecture at the back of each artist.!  

2. Differentiate a house from other styles!  

3. Software also exhibits some styles!  

4. Each style describes a system category that encompasses: !  

(1) set of components (e.g., a database, computational modules) that  

perform a function required by a system, !  

(2) set of connectors that enable “communication, coordination and  

cooperation” among components, !  

(3) constraints that define how components can be integrated to form  the 

system, and!  

(4) semantic models that enable a designer to understand the overall  

properties of a system by analyzing the known properties of its  constituent 

parts. !  

  

1. DATA CENTRED ARCHITECTURES:  

  

 A data store will reside at the center of this architecture and is accessed 

frequently by the other components that update, add, delete or modify the 

data present within the store.  

 The figure illustrates a typical data centered style. The client software 

access a central repository. Variation of this approach are used to transform 

the repository into a blackboard when data related to client or data of 

interest for the client change the notifications to client software.  

 This data-centered architecture will promote integrability. This means that 

the existing components can be changed and new client components can 

be added to the architecture without the permission or concern of other 

clients.  

 Data can be passed among clients using blackboard mechanism.  



 

 

   

2.   
  

DATA   FLOW   ARCHITECTURES:   

  

   This kind of architecture is used when input data to be transformed into output  

data through a series of computational manipulative components.   

   The figure represents  pipe - and - filter architecture since it uses both pipe and  

filter and it has a set of components called filters connected by pipes.   

   Pipes are used to transmit data from one component to the next.   

  



 

 

 Each filter will work independently and is designed to take data input of a 

certain form and produces data output to the next filter of a specified form. 

The filters don’t require any knowledge of the working of neighboring 

filters.  

 If the data flow degenerates into a single line of transforms, then it is 

termed as batch sequential. This structure accepts the batch of data and 

then applies a series of sequential components to transform it.  

  

CALL AND RETURN ARCHITECTURES:   

  

It is used to create a program that is easy to scale and modify. Many sub-styles exist 

within this category. Two of them are explained below.  

  

REMOTE PROCEDURE CALL ARCHITECTURE:   

This components is used to present in a main program or sub program architecture 

distributed among multiple computers on a network.  

  

MAIN PROGRAM OR SUBPROGRAM ARCHITECTURES: The main 

program structure decomposes into number of subprograms or function into a 

control hierarchy. Main program contains number of subprograms that can invoke 

other components.  

  

OBJECT ORIENTED ARCHITECTURE: The components of a system 

encapsulate data and the operations that must be applied to manipulate the data. The 

coordination and communication between the components are established via the 

message passing.  

  

LAYERED ARCHITECTURE:  

  

 A number of different layers are defined with each layer performing a 

well-defined set of operations. Each layer will do some operations that 

becomes closer to machine instruction set progressively.  

 At the outer layer, components will receive the user interface operations 

and at the inner layers, components will perform the operating system 

interfacing(communication and coordination with OS)  



 

 

 Intermediate layers to utility services and application software 

functions.  

  

  

  

  

ARCHITECHTURAL DESIGN:  

1.REPRESENTING THE SYSTEM IN CONTEXT:  

A sytem context diagram accomplishea this requirement by representing the 

flow of information in to and out of thesystem ,the user interface, and relavent 

support processing superordinate systems: those systems that use the target 

sytems as a part of some higher level processing scheme subordinate 

systems:  

those systems that are used by the target systems and processing that are 

necessary to complete target system functionality peer-level system:  



 

 

Those systems that interact on a peer-to-peer basis information is either produced 

or consumed by the peers and the target system.  

ACTORS:  

Those entities that interact with the target system by producing or consuming 

information that is necessary for requisite processing.  

  

DEFINING ARCH TYPES:  

An archetype is a class or pattern that represents a core abstraction that is critical 

to the design of an architechture  for the target system.  

Node: represents a cohesive collection of input and output elements of the home 

security function.  

  

Detector:  

An abstraction  that encompasses all sensing equipment that feeds information 

in to  target system.  

  

Indicator:  

An abstraction that represents all machanisms for indicating that an alarm 

condition is occurring  

  

Controller:  

An abstraction that depicts the mechanism that allows the arming or 

disarming of a node.if controllers reside on a network they have the ability to 

communicate with one another.  

  

REFINING THE ARCHITECHTURE INTO COMPONETNS:  

As the software architechture is refined into components the structure of the 

system begins to emerge   

1. External communication management    

2. Control panel processing  

3. Detector management  

4. Alarm processing  



 

 

DESCRIBING INSTANTIATIONS OF THE SYSTEM:  

The architechtural design that has been modeled to this point is still relatively h igh 

leve the context of the system has that indicate the been represented a archetypes  

that indicate the important abstractions within the problem domain have been 

defined.  

  

ARCHITECTURAL MAPPING USING DATA FLOW | TRANSFORM 

MAPPING:  

  

Architectural Mapping Using Data Flow  

A mapping technique, called structured design, is often characterized as a data flow-

oriented design method because it provides a convenient transition from a data flow 

diagram to software architecture.   

The transition from information flow to program structure is accomplished as part of a 

six step process:   

(1) The type of information flow is established,   

(2) Flow boundaries are indicated,  

(3) The DFD is mapped into the program structure,   

(4) Control hierarchy is defined,   

(5) The resultant structure is refined using design measures.   

(6) The architectural description is refined and elaborated.  

Example of data flow mapping, a step-by-step “transform” mapping for a small part of 

the SafeHome security function.   

In order to perform the mapping,  

The type of information flow must be determined. It is calledtransform flow and 

exhibits a linear quality.   

Data flows into the system along an incoming flow path where it is transformed from 

an external world representation into internalized form. Once it has been 

internalized, it is processed at a transform center.   

Finally, it flows out of the system along an outgoing flow path that transforms the data 

into external world form.  

 Transform Mapping  

Transform mapping is a set of design steps that allows a DFD with transform flow 

characteristics to be mapped into a specific architectural style.   

To illustrate this approach, we again consider the SafeHome security function.   



 

 

To map these data flow diagrams into a software architecture, you would initiate the 

following design steps:   

Step 1. Review the fundamental system model.  

Step 2. Review and refine data flow diagrams for the software.   

Step 3. Determine whether the DFD has transform or transaction flow characteristics.   

Step 4. Isolate the transform center by specifying incoming and outgoing flow 

boundaries.   

Step 5. Perform “first-level factoring.”  

Step 6. Perform “second-level factoring.”   

Step 7. Refine the first-iteration architecture using design heuristic for improved 

software quality.   

  

  

USER INTERFACE DESIGN:  

  

User interface design (UI design) refers to the design of various types of software 

and hardware interfaces through which users interact with computers and other 

technologies. In today's diverse tech world, UI design involves a wide spectrum of 

engineering practices applied to different kinds of products and devices.  

  

1. INERFACE ANALYSIS AND DESIGN:  

  
Four different models establishes the profile of end users of the system.  

  

1.novices  

2.knowlwdgeable intermittent users  

3.knowledgeable frequent users  

4.the users mental model  

  

THE PROCESS:  

  

The analysis and design process for the user interface is iterative and can be represented 

using a spiral model   

1.user,task,and environment analysis and modeling  



 

 

2.interface design 3.interface 

construction  

4.interface validation:  

   

INTERFACE ANALYSIS:  

  

1.user analysis User 

revies  

Marketing input  

Support input  

  

TASK ANALYSIS AND MODELING:  

Usecases  

Task elaboration  

Object elaboration  

Work flow analysis  

Hierrarchial representation  

  

ANALYSIS AND DISPLAY CONTENT:  

 For modern applications dislay content  can range from character based reports 

,graphical displays a histogram.these data objectcan be generayed by components.  

  

ANALYSIS OF THE WORK ENVIRONMENT:  

In some applications user interface for a computer based  system is placed in a user 

friendly location but in others lighting may be suboptimal, noise may be factor The 

interface designer may be constrained by factors that mitigate against  ease of use.  

  

  

  

Component Level Design:   

  

Designing Class Based Components:  

 A software component is a modular building block for the computer software. 

Component is defined as a modular, deployable and replaceable part of the system 

which encloses the implementation and exposes a set of interfaces.  



 

 

COMPONENTS VIEW:  

The components has different views as follows:  

  

1. An object-oriented view  

• An object-oriented view is a set of collaborating classes.  

• The class inside a component is completely elaborated and it consists of all the 

attributes and operations which are applicable to its implementation.  

• To achieve object-oriented design it elaborates analysis classes and the infrastructure 

classes.  

    

2. The traditional view  

• A traditional component is known as module.  

• It resides in the software and serves three important roles which are control component, 

a problem domain component and an infrastructure component.  

• A control component coordinate is an invocation of all other problem domain 

components.  

• A problem domain component implements a complete function which is needed by the 

customer.  

• An infrastructure component is responsible for function which support the processing 

needed in the problem domain.  

    

3. The Process related view  

• This view highlights the building system out of existing components.  

• The design patterns are selected from a catalog and used to populate the architecture.  

Class-based design components  



 

 

 

 

The  principles  for  class-based  design  component  are  as  follows:  

  

Open Closed Principle (OCP):  

 Any module in OCP should be available for extension and modification.   

  

The Liskov Substitution Principle (LSP):  
  The subclass must be substitutable for their base class.  

  This principle was suggested by Liskov.  

    

Dependency Inversion Principle (DIP)  
  It depends on the abstraction and not on concretion.  

  Abstraction is the place where the design is extended without difficulty.  

    

The Interface Segregation Principle (ISP)  
Many client specific interfaces is better than the general purpose interface.   

  
The Release Reuse Equivalency Principle (REP)  

  A fragment of reuse is the fragment of release.  
  The class components are designed for reuse which is an indirect contract between the 

developer and the user.  

    

The common closure principle (CCP)  

The classes change and belong together i.e the classes are packaged as part of 

design which should have the same address and functional area.  

  

  

The Common Reuse Principle (CRP)  

The classes that are not reused together should not be grouped together.  

USER INTERFACE DESIGN:  

  User interface design helps in succession most of the software.  
  It is part of the user and computer.  



 

 

  Good interface design is user friendly. 

Types of user interface:  

 

 

  

  

1. Command Interpreter :  

  

Commands help the user to communicate with the computer system.  

  

2. Graphical User Interfaces (GUI):  

  

  It is another approach to communicate with system.  

  It allows a mouse-based, window-menu-based systems as an interface.  

The Golden Rules:  

The  golden  rules  are  known  as  interface  design  principles.  

The golden rule are as follows:  

1. Place the user in control  

  The interaction should be defined in such a way that the user is not forced to implement 

unnecessary actions.  

  The technical internal details must be hidden from the casual user.  

  Design for the direct interaction with objects that appear on the screen.  

2. Reduce the user's memory load  

  The user interface must be designed in such a way that it reduces the demands on the 

user's short term memory.  

  Create the meaningful defaults value as an advantage for the average users in the start of 

application.  

  There must be a reset option for obtaining the default values.  



 

 

  The shortcut should be easily remembered by the users.  

  The interface screen should be friendly to users.  

3. Make the interface consistent  

  The system must allow the user to put task into meaningful context.  

  Consistency should be maintained for all the interaction.  

  Do not change the past system that is created by the user expectation unless there is a 

good reason to do that.  

  

TRADITIONAL COMPONENT DESIGN:  

  

Introduction :   

Traditional components are designed based on different constructs like   

Sequence, Condition,  

Repetition.   

Sequence :implements processing steps that are essential in the specification of any 

algorithm.   

Condition: provides the facility for selected processing based on some logical 

occurrence.   

Repetition :allows for looping.   

These three constructs are fundamental to structured programming— an 

important component-level design technique.  

The use of the structured constructs reduces program complexity and thereby 

enhances readability, testability, and maintainability.   

The use of a limited number of logical constructs also contributes to a human 

understanding process that psychologists call chunking.  

Graphical Design Notation :  

A picture is worth a thousand words,” but it’s rather important to know which picture 

and which 1000 words.   

There is no question that graphical tools, such as the UML activity diagram or the 

flowchart, provide useful pictorial patterns that readily depict procedural detail.  The 

activity diagram allows you to represent sequence, condition, and repetition— all 

elements of structured programming.   

It is a descendent of an earlier pictorial design representation (still used widely) 

called a flowchart.   



 

 

A flowchart, like an activity diagram, is quite simple pictorially. A box is used to 

indicate a processing step. A diamond represents a logical condition, and arrows 

show the flow of control  



 

 

  

  

Tabular Design Notation   

In many software applications, a module  may be required to evaluate a complex  

combination of conditions and select appropriate actions based on these conditions.   

Decision tables provide a notation that translates actions and conditions into a  

tabular form.     

The table is difficult to misinterpret   and may even be used as a machine - readable  

input to a table - driven algorithm.   



 

 

  

  

Program Design Language   

Program design language (PDL), also called structured English or pseudocode,  It 

incorporates the logical structure of a programming language with the free-form 

expressive ability of a natural language (e.g., English).   

Narrative text (e.g., English) is embedded within a programming language-like 

syntax.   

Automated tools can be used to enhance the application of PDL.  

A basic PDL syntax should include constructs for   

1. Component definition,   

2. Interface description,   

3. Data declaration,   

4. Block structuring,   

5. Condition constructs,   

6. Repetition constructs,   

7. Input-output (I/O) constructs.   

It should be noted that PDL can be extended to include keywords.  

  

  
  

  

  

  

  

  

  

  

  



 

 

  

  

  

  

UNIT-IV SOFTWARE  TESTING  FUNDAMENTALS  

  

Internal and external views of Testing:  

Inferences are said to possess internal validity if a causal relation between two 

variables is properly demonstrated. A causal inference may be based on a relation 

when three criteria are satisfied:  

  

INTERNAL AND EXTERNAL VIEWS OF TESTING:  

   

Inferences are said to possess internal validity if a causal relation between two 

variables is properly demonstrated. A causal inference may be based on a relation 

when three criteria are satisfied:  

   

1. the "cause" precedes the "effect" in time (temporal precedence),  

   

2. the "cause" and the "effect" are related (covariation), and  

3. there are no plausible alternative explanations for the observed covariation 

(nonspuriousness)  

   

In scientific experimental settings, researchers often manipulate a variable (the 

independent variable) to see what effect it has on a second variable (the dependent 

variable)] For example, a researcher might, for different experimental groups, 

manipulate the dosage of a particular drug between groups to see what effect it has 

on health.  

 In this example, the researcher wants to make a causal inference, namely, that 

different doses of the drug may be held responsible for observed changes or 

differences. When the researcher may confidently attribute the observed changes or 

differences in the dependent variable to the independent variable, and when he can 

rule out other explanations (or rival hypotheses), then his causal inference is said to 

be internally valid  

   



 

 

In many cases, however, the magnitude of effects found in the dependent variable 

may not just depend on  variations in the independent variable, the power of the 

instruments and statistical procedures used to measure and detect the effects, and the 

choice of statistical methods (see: Statistical conclusion validity).  

   

Rather, a number of variables or circumstances uncontrolled for (or uncontrollable) 

may lead to additional or alternative explanations (a) for the effects found and/or (b) 

for the magnitude of the effects found. Internal validity, therefore, is more a matter 

of degree than of either-or, and that is exactly why research designs other than true 

experiments may also yield results with a high degree of internal validity.  

   

In order to allow for inferences with a high degree of internal validity, precautions 

may be taken during the design of the scientific study. As a rule of thumb, 

conclusions based on correlations or associations may only allow for lesser degrees 

of internal validity than conclusions drawn on the basis of direct manipulation of the 

independent variable.   

And, when viewed only from the perspective of Internal Validity, highly controlled 

true experimental designs (i.e. with random selection, random assignment to either 

the control or experimental groups, reliable instruments, reliable manipulation 

processes, and safeguards against confounding factors) may be the "gold standard" 

of scientific research. By contrast, however, the very strategies employed to control 

these factors may also limit the generalizability or External Validity of the findings.  

   

External validity is the validity of generalized (causal) inferences in scientific 

research, usually based one xperiments as experimental validity. In other words, it 

is the extent to which the results of a study can be generalized to other situations and 

to other people For example, inferences based on comparative psychotherapy studies 

often employ specific samples (e.g. volunteers, highly depressed, no comorbidity).  

If psychotherapy is found effective for these sample patients, will it also be effective 

for non-volunteers or the mildly depressed or patients with concurrent other 

disorders?  

 Situation: All situational specifics (e.g. treatment conditions, time, location, 

lighting, noise, treatment administration, investigator, timing, scope and extent of 

measurement, etc. etc.) of a study potentially limit generalizability.  



 

 

Pre-test effects: If cause-effect relationships can only be found when pre-tests are 

carried out, then this also limits the generality of the findings.  

Post-test effects: If cause-effect relationships can only be found when post-tests are 

carried out, then this also limits the generality of the findings.  

Reactivity (placebo, novelty, and Hawthorne effects): If cause-effect relationships 

are found they might not be generalizable to other settings or situations if the effects 

found only occurred as an effect of studying the situation.  

Rosenthal effects: Inferences about cause-consequence relationships may not be 

generalizable to other investigators or researchers.  

  

WHITE-BOX TESTING:  

  

White-box testing, sometimes called glass-box testing, is a test case design method 

that uses the control structure of the procedural design to derive test cases. Using 

white-box testing methods, the software engineer can derive test cases that (1) 

guarantee that all independent paths within a module have been exercised at least 

once,(2) exercise all logical decisions on their true and false sides, (3) execute all 

loops at their boundaries and within their operational bounds, and (4) exercise 

internal data structures to ensure their validity.  

  

A reasonable question might be posed at this juncture: "Why spend time and energy 

worrying about (and testing) logical minutiae when we might better expend effort It 

is not possible to exhaustively test every program path because the number of paths 

is simply too large. White-box tests can be designed only after a component-level 

design(or source code)exists. The logical details of the program must be available.  

ensuring that program requirements have been met?" Stated another way, why 

don'twe spend all of our energy on black-box tests? The answer lies in the nature of 

softwaredefects   

• Logic errors and incorrect assumptions are inversely proportional to the 

probability that a program path will be executed. Errors tend to creep into our work 

when we design and implement function, conditions, or control that are out of the 

mainstream. Everyday processing tends to be well understood (and well scrutinized), 

while "special case" processing tends to fall into the cracks.  

• We often believe that a logical path is not likely to be executed when, in fact, 

it may be executed on a regular basis. The logical flow of a program is sometimes 

counterintuitive, meaning that our unconscious assumptions about flow of control 



 

 

and data may lead us to make design errors that are uncovered only once path testing 

commences.  

• Typographical errors are random. When a program is translated into 

programming language source code, it is likely that some typing errors will occur. 

Many will be uncovered by syntax and type checking mechanisms, but others may 

go undetected until testing begins. It is as likely that a typo will exist on an obscure 

logical path as on a mainstream path.  

Each of these reasons provides an argument for conducting white-box tests. 

Blackbox testing, no matter how thorough, may miss the kinds of errors noted here. 

Whitebox testing is far more likely to uncover them.  

  

BASIS PATH TESTING:  

Basis path testing is a white-box testing technique first proposed by Tom McCabe 

[MCC76]. The basis path method enables the test case designer to derive a logical 

complexity measure of a procedural design and use this measure as a guide for 

defining a basis set of execution paths. Test cases derived to exercise the basis set 

are guaranteed to execute every statement in the program at least one time during 

testing.  

  

17.4.1 Flow Graph Notation:  

  

Before the basis path method can be introduced, a simple notation for the 

representation of control flow, called a flow graph (or program graph) must be 

introduced.3The flow graph depicts logical control flow using the notation illustrated 

in Figure Each structured construct (Chapter 16) has a corresponding flow graph 

symbol.  

To illustrate the use of a flow graph, we consider the procedural design 

representation in Figure. Here, a flowchart is used to depict program control 

structure.  

  



 

 

Figure 17.2B maps the flowchart into a corresponding flow graph (assuming that no 

compound conditions are contained in the decision diamonds of the flowchart). 

Referring to Figure 17.2B, each circle, called a flow graph node, represents one or 

more procedural statements. A sequence of process boxes and a decision diamond 

can map into a single node. The arrows on the flow graph, called edges or links, 

represent low of control and are analogous to flowchart arrows. An edge must 

terminate at a node, even if the node does not represent any procedural statements 

(e.g., seethe symbol for the if-then-else construct). Areas bounded by edges and 

nodes are called regions. When counting regions, we include the area outside the 

graph as a region.4.  

  

When compound conditions are encountered in a procedural design, the generation 

of a flow graph becomes slightly more complicated. A compound condition occurs 

when one or more Boolean operators (logical OR, AND, NAND, NOR) is present 

in a conditional statement. Referring to Figure 17.3, the PDL segment translates into 

the flow graph shown. Note that a separate node is created for each of the conditions 

a and b in the statement IF a OR b. Each node that contains a condition is called a 

predicat enode and is characterized by two or more edges emanating from it.   

Cyclomatic complexity :is a software metric that provides a quantitative measure of 

the logical complexity of a program. When used in the context of the basis path 

testing method, the value computed for cyclomatic complexity defines the number 

of independent paths in the basis set of a program and provides us with an upper 

bound for the number of tests that must be conducted to ensure that all statements 

have been executed at least once.  

  

An independent path is any path through the program that introduces at least one 

new set of processing statements or a new condition. When stated in terms of a flow  



 

 

  



 

 

 
  



 

 

path 1: 1



 

 

  
graph, an independent path must move along at least one edge that has not been  

traversedbefore the path is defined. For example, a set of independent paths for the  

flow   graph  . illustrated in  Figure is   

path 2: 1 - 2 - 3 - 4 - 5 - 10 - 1 - 11   

path 3: 1 - 2 - 3 - 6 - 8 - 9 - 10 - 1 - 11   

path 4: 1 - 2 - 3 - 6 - 7 - 9 - 10 - 1 - 11   

Note that each new path introduces a new edge. The path   1 - 2 - 3 - 4 - 5 - 10 - 1 - 2 - 3 - 6 - 8 - 

9 - 10 - 1 - 11 is not considered to be an independent path because it is simpl y a  

combination of   already specified paths and does not traverse any new edges.   Paths  

1 , 2, 3, and 4 constitute a  basis set  for the flow graph in Figure 17.2B. That   

is, if tests can be designed to force execution of these paths (a basis set), every  

stateme nt   in the program will have been guaranteed to be executed at least one  

time and   every condition will have been executed on its true and false sides. It  

should be noted   that the basis set is not unique. In fact, a number of different basis  

sets can be deri ved   for a given procedural design.   

How do we know how many paths to look for? The computation of cyclomatic   

complexity provides the answer.   

  

Cyclomatic complexity has a foundation in graph theory and provides us with an   

extremely useful software metric.  Complexity is computed in one of three ways:   
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1. The number of regions of the flow graph correspond to the cyclomatic complexity.  

2. Cyclomatic complexity, V(G), for a flow graph, G, is defined as  

V(G) = E _ N + 2  

Predicatenode  

...  

IF a OR b then 

procedure x  

else procedure y  

ENDIF 

y b a x 

x  

How is cyclomatic complexity computed?  

  

where E is the number of flow graph edges, N is the number of flow graph nodes.  

3. Cyclomatic complexity, V(G), for a flow graph, G, is also defined as 

V(G) = P + 1 where P is the number of predicate nodes contained in the 

flow graph G.  

Referring once more to the flow graph in Figure 17.2B, the cyclomatic complexity 

can be computed using each of the algorithms just noted:  

1. The flow graph has four regions.  

2. V(G) = 11 edges _ 9 nodes + 2 = 4.  

3. V(G) = 3 predicate nodes + 1 = 4.  

Therefore, the cyclomatic complexity of the flow graph in Figure 17.2B is 4.  

More important, the value for V(G) provides us with an upper bound for the number 

of independent paths that form the basis set and, by implication, an upper bound on 

the number of tests that must be designed and executed to guarantee coverage of all 

program statements.  

The basis path testing method can be applied to a procedural design or to source 

code. In this section, we present basis path testing as a series of steps. The procedure  

average, depicted in PDL in Figure 17.4, will be used as an example to illustrate 

each step in the test case design method. Note that average, although an extremely 

simple algorithm, contains compound conditions and loops. The following steps 

canbe applied to derive the basis set:  

1. Using the design or code as a foundation, draw a corresponding flow graph. 

A flow graph is created using the symbols and construction rules presentedin Section 

16.4.1. Referring to the PDL for average in Figure , a flow graph is created by 

numbering those PDL statements that will be mapped into corresponding flow graph 

nodes. The corresponding flow graph is in Figure 17.5. 2. Determine the cyclomatic 



 

 

complexity of the resultant flow graph. The cyclomatic complexity, V(G), is 

determined by applying the algorithms described in Section 17.5.2. It should be 

noted that V(G) can be determined without developing a flow graph by counting all 

conditional statements in the PDL (for the procedure average, compound conditions 

count as two) and  

adding 1. Referring to Figure 17.5,  

V(G) = 6 regions  

V(G) = 17 edges _ 13 nodes + 2 = 6  

V(G) = 5 predicate nodes + 1 = 6  

3. Determine a basis set of linearly independent paths. The value of 

V(G) provides the number of linearly independent paths through the 

program control structure. In the case of procedure average, we expect to 

specify six paths: path 1: 1-2-10-11-13 path 2: 1-2-10-12-13 path 3: 1-2-3-

10-11-13 path 4: 1-2-3-4-5-8-9-2-. . . path 5: 1-2-3-4-5-6-8-9-2-. . . path 6: 

1-2-3-4-5-6-7-8-9-2-. . .  

The ellipsis (. . .) following paths 4, 5, and 6 indicates that any path through the 

remainder of the control structure is acceptable. It is often worthwhile to identify 

predicate nodes as an aid in the derivation of test cases. In this case, nodes 2, 3, 5, 6, 

and 10 are predicate nodes.  

4. Prepare test cases that will force execution of each path in the 

basis set. Data should be chosen so that conditions at the predicate nodes 

are appropriately set   



 

 

  
Path 1 test case:  

value(k) = valid input, where k < i for 2 ≤ i ≤ 100  

value(i) = _999 where 2 ≤ i ≤ 100  

Expected results: Correct average based on k values and proper totals.  

Note: Path 1 cannot be tested stand-alone but must be tested as part of path 4, 5, and 

6 tests. Path 2 test case: value(1) = _999  

Expected results: Average = _999; other totals at initial values.  

Path 3 test case:  

Attempt to process 101 or more values. First 100 values should be valid.  

Expected results: Same as test case 1.  

Path 4 test case: value(i) = valid 

input where i < 100 value(k) < 

minimum where k < i  

Expected results: Correct average based on k values and proper totals.  



 

 

Path 5 test case: value(i) = valid 

input where i < 100 value(k) > 

maximum where k <= i  

Expected results: Correct average based on n values and proper totals.  

Path 6 test case: value(i) = valid 

input where i < 100  

Expected results: Correct average based on n values and proper totals.  

Each test case is executed and compared to expected results. Once all test cases have 

been completed, the tester can be sure that all statements in the program have been  

executed at least once. It is important to note that some independent paths (e.g., path 

1 in our example) cannot be tested in stand-alone fashion. That is, the combination 

of data required to traverse the path cannot be achieved in the normal flow of the 

program. In such cases, these paths are tested as part of another path test.  

Graph Matrices  

The procedure for deriving the flow graph and even determining a set of basis paths  

is amenable to mechanization. To develop a software tool that assists in basis path 

testing, a data structure, called a graph matrix, can be quite useful. A graph matrix 

is a square matrix whose size (i.e., number of rows and columns) is equal to the 

number of nodes on the flow graph. Each row and column corresponds to an 

identified node, and matrix entries correspond to connections (an edge) between 

nodes. A simple example of a flow graph and its corresponding graph matrix [BEI90] 

is shown in Figure 17.6.  

Referring to the figure, each node on the flow graph is identified by numbers, while 

each edge is identified by letters. A letter entry is made in the matrix to correspond 

to a connection between two nodes. For example, node 3 is connected to node 4 by 

edge b.  

To this point, the graph matrix is nothing more than a tabular representation of a flow 

graph. However, by adding a link weight to each matrix entry, the graph matri can 

become a powerful tool for evaluating program control structure during testing.  

The link weight provides additional information about control flow. In its simplest 

form, the link weight is 1 (a connection exists) or 0 (a connection does not exist). 

But link weights can be assigned other, more interesting properties:  

• The probability that a link (edge) will be executed.  

• The processing time expended during traversal of a link.  

• The memory required during traversal of a link.  



 

 

  
To illustrate, we use the simplest weighting to indicate connections (0 or 1). The 

graph matrix in Figure  is redrawn as shown in Figure  Each letter has been replaced 

with a 1, indicating that a connection exists (zeros have been excluded for clarity).  

Represented in this form, the graph matrix is called a connection matrix. Referring 

to Figure , each row with two or more entries represents a predicate node. Therefore, 

performing the arithmetic shown to the right of the connection matrix provides us 

with still another method for determining cyclomatic complexity   

Beizer [BEI90] provides a thorough treatment of additional mathematical algorithms 

that can be applied to graph matrices. Using these techniques, the analysis required 

to design test cases can be partially or fully automated.  



 

 

  

CONTROL STRUCTURE TESTING:  

  

The basis path testing technique described in Section 17.4 is one of a number of 

techniques for control structure testing. Although basis path testing is simple and 

highly effective, it is not sufficient in itself. In this section, other variations on control 

structure testing are discussed. These broaden testing coverage and improve quality 

of white-box testing.  

 Condition Testing  

Condition testing is a test case design method that exercises the logical conditions 

contained in a program module. A simple condition is a Boolean variable or a 

relational expression, possibly preceded with one NOT (¬) operator. A relational 

expression takes the form E1 <relational-operator> E2 where E1 and E2 are 

arithmetic expressions and <relational-operator> is one of the following: <, ≤, =, ≠ 

(nonequality), >, or ≥. A compound condition is composed of two or more simple 

conditions, Boolean operators, and parentheses. We assume that Boolean operators 

allowed in a compound condition include OR (|), AND (&) and NOT  

(¬). A condition without relational expressions is referred to as a Boolean expression.  

Therefore, the possible types of elements in a condition include a Boolean operator,  

a Boolean variable, a pair of Boolean parentheses (surrounding a simple or 

compound condition), a relational operator, or an arithmetic expression.  

If a condition is incorrect, then at least one component of the condition is incorrect. 

Therefore, types of errors in a condition include the following:  

  

• Boolean operator error (incorrect/missing/extra Boolean operators).  

• Boolean variable error.  

• Boolean parenthesis error.  

• Relational operator error.  

• Arithmetic expression error.  

The condition testing method focuses on testing each condition in the program. 

Condition testing strategies (discussed later in this section) generally have two 

advantages.  

First, measurement of test coverage of a condition is simple. Second, the test 

coverage of conditions in a program provides guidance for the generation of 

additional tests for the program.  

The purpose of condition testing is to detect not only errors in the conditions of a 

program but also other errors in the program. If a test set for a program P is effective 

for detecting errors in the conditions contained in P, it is likely that this test set is 



 

 

also effective for detecting other errors in P. In addition, if a testing strategy is 

effective for detecting errors in a condition, then it is likely that this strategy will 

also be effective for detecting errors in a program.  

A number of condition testing strategies have been proposed. Branch testing is 

probably the simplest condition testing strategy. For a compound condition C, the 

true and false branches of C and every simple condition in C need to be executed at 

least once [MYE79].  

Domain testing [WHI80] requires three or four tests to be derived for a relational 

expression. For a relational expression of the form E1 <relational-operator> E2 

three tests are required to make the value of E1 greater than, equal to, or less than 

that of E2 [HOW82]. If <relational-operator> is incorrect and E1 and E2 are 

correct, then these three tests guarantee the detection of the relational operator 

error. To detect errors in E1 and E2, a test that makes the value of E1 greater or 

less than that of E2 should make the difference between these two values as small 

as possible.  

For a Boolean expression with n variables, all of 2n possible tests are required (n > 

0).  

This strategy can detect Boolean operator, variable, and parenthesis errors, but it is 

practical only if n is small.  

Error-sensitive tests for Boolean expressions can also be derived [FOS84, TAI87]. 

For a singular Boolean expression (a Boolean expression in which each Boolean 

variable occurs only once) with n Boolean variables (n > 0), we can easily generate 

a test set with less than 2n tests such that this test set guarantees the detection of 

multiple Boolean operator errors and is also effective for detecting other errors.  

Tai [TAI89] suggests a condition testing strategy that builds on the techniques just 

outlined. Called BRO (branch and relational operator) testing, the technique 

guarantees the detection of branch and relational operator errors in a condition 

provided that all Boolean variables and relational operators in the condition occur 

only once and have no common variables.  

The BRO strategy uses condition constraints for a condition C. A condition 

constraint for C with n simple conditions is defined as (D1, D2, . . ., Dn), where Di 

(0 < i ≤ n) is a symbol specifying a constraint on the outcome of the ith simple 

condition in condition C. A condition constraint D for condition C is said to be 

covered by an execution of C if, during this execution of C, the outcome of each 

simple condition in C satisfies the corresponding constraint in D.  

For a Boolean variable, B, we specify a constraint on the outcome of B that states 

that B must be either true (t) or false (f). Similarly, for a relational expression, the 

symbols  

>, =, < are used to specify constraints on the outcome of the expression  



 

 

As an example, consider the condition  

C1: B1 & B2  

where B1 and B2 are Boolean variables. The condition constraint for C1 is of the 

form  

(D1, D2), where each of D1 and D2 is t or f. The value (t, f) is a condition constraint  

for C1 and is covered by the test that makes the value of B1 to be true and the value  

of B2 to be false. The BRO testing strategy requires that the constraint set {(t, t), (f, 

t),  

(t, f)} be covered by the executions of C1. If C1 is incorrect due to one or more 

Boolean operator errors, at least one of the constraint set will force C1 to fail.  

As a second example, a condition of the form C2: B1 & (E3 = E4) where B1 is a 

Boolean expression and E3 and E4 are arithmetic expressions. A condition constraint 

for C2 is of the form (D1, D2), where each of D1 is t or f and D2 is  

>, =, <. Since C2 is the same as C1 except that the second simple condition in C2 is 

a  

relational expression, we can construct a constraint set for C2 by modifying the 

constraint set {(t, t), (f, t), (t, f)} defined for C1. Note that t for (E3 = E4) implies = 

and that  

f for (E3 = E4) implies either < or >. By replacing (t, t) and (f, t) with (t, =) and (f,  

=), respectively, and by replacing (t, f) with (t, <) and (t, >), the resulting constraint 

set for C2 is {(t, =), (f, =), (t, <), (t, >)}. Coverage of the preceding constraint set 

will guarantee detection of Boolean and relational operator errors in C2.  

As a third example, we consider a condition of the form  

C3: (E1 > E2) & (E3 = E4) where E1, E2, E3, and E4 are arithmetic expressions. A 

condition constraint for C3 is of the form (D1, D2), where each of D1 and D2 is >, 

=, <. Since C3 is the same as C2 except that the first simple condition in C3 is a 

relational expression, we can construct a constraint set for C3 by modifying the 

constraint set for C2, obtaining  

{(>, =), (=, =), (<, =), (>, >), (>, <)}  

Coverage of this constraint set will guarantee detection of relational operator errors 

in C3.  

  

BLACK-BOX TESTING:  

  

Black-box testing, also called behavioral testing, focuses on the functional 

requirements of the software. That is, black-box testing enables the software 

engineer to derive sets of input conditions that will fully exercise all functional 

requirements for a program. Black-box testing is not an alternative to white-box 



 

 

techniques. Rather, it is a complementary approach that is likely to uncover a 

different class of errors than white-box methods.  

Black-box testing attempts to find errors in the following categories: (1) incorrect or 

missing functions, (2) interface errors, (3) errors in data structures or external data 

base access, (4) behavior or performance errors, and (5) initialization and 

termination errors.  

Unlike white-box testing, which is performed early in the testing process, blackbox 

testing tends to be applied during later stages of testing (see Chapter 18). Because 

black-box testing purposely disregards control structure, attention is focused on the 

information domain. Tests are designed to answer the following questions:  

• How is functional validity tested?  

• How is system behavior and performance tested?  

• What classes of input will make good test cases?  

• Is the system particularly sensitive to certain input values?  

• How are the boundaries of a data class isolated?  

• What data rates and data volume can the system tolerate?  

• What effect will specific combinations of data have on system operation? By 

applying black-box techniques, we derive a set of test cases that satisfy the 

following criteria [MYE79]: (1) test cases that reduce, by a count that is greater 

than one, the number of additional test cases that must be designed to achieve 

reasonable testing and (2) test cases that tell us something about the presence or 

absence of classes of errors, rather than an error associated only with the specific 

test at hand. Black-box testing attempts to find errors in the following categories: 

(1) incorrect or missing functions, (2) interface errors, (3) errors in data structures 

or external data base access, (4) behavior or performance errors, and (5) 

initialization and termination errors.  

Unlike white-box testing, which is performed early in the testing process, blackbox 

testing tends to be applied during later stages of testing (see Chapter 18). Because 

black-box testing purposely disregards control structure, attention is focused on the 

information domain. Tests are designed to answer the following questions:  

• How is functional validity tested?  

• How is system behavior and performance tested?  

• What classes of input will make good test cases?  

• Is the system particularly sensitive to certain input values?  

• How are the boundaries of a data class isolated?  

• What data rates and data volume can the system tolerate?  

• What effect will specific combinations of data have on system operation? By 

applying black-box techniques, we derive a set of test cases that satisfy the 



 

 

following criteria [MYE79]: (1) test cases that reduce, by a count that is greater 

than one, the number of additional test cases that must be designed to achieve 

reasonable testing and (2) test cases that tell us something about the presence or 

absence of classes of errors, rather than an error associated only with the specific 

test at hand.  

Graph-Based Testing Methods  

The first step in black-box testing is to understand the objects6 that are modeled in 

software and the relationships that connect these objects. Once this has been 

accomplished,the next step is to define a series of tests that verify “all objects have 

the expected relationship to one another [BEI95].” Stated in another way, software 

testing begins by creating a graph of important objects and their relationships and 

then devising a series of tests that will cover the graph so that each object and 

relationship is exercised and errors are uncovered.  

To accomplish these steps, the software engineer begins by creating a graph—a 

collection of nodes that represent objects; links that represent the relationships 

between objects; node weights that describe the properties of a node (e.g., a specific 

data value or state behavior); and link weights that describe some characteristic of a 

link.7  

    
  

  

  

  

  



 

 

  
  

  

  

  

he symbolic representation of a graph is shown in Figure 17.9A. Nodes are 

represented as circles connected by links that take a number of different forms. A 

directed link (represented by an arrow) indicates that a relationship moves in only 

one direction.  

A bidirectional link, also called a symmetric link, implies that the relationship applies 

in both directions. Parallel links are used when a number of different relationships 

are established between graph nodes.  

As a simple example, consider a portion of a graph for a word-processing application  

(Figure 17.9B) where  

Object #1 = new file menu select  

Object #2 = document window  

Object #3 = document text  

Referring to the figure, a menu select on new file generates a document window. 

The node weight of document window provides a list of the window attributes that 

are to be expected when the window is generated. The link weight indicates that the 

window must be generated in less than 1.0 second  Contains  
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symmetric relationship between the new file menu select and document text, and 

parallel links indicate relationships between document window and document text. 

In reality, a far more detailed graph would have to be generated as a precursor to test 

case design. The software engineer then derives test cases by traversing the graph 

and covering each of the relationships shown. These test cases are designed in an 

attempt to find errors in any of the relationships. Beizer [BEI95] describes a number 

of behavioral testing methods that can make use of graphs  

  

Transaction flow modeling. The nodes represent steps in some transaction 

(e.g., the steps required to make an airline reservation using an on-line 

service), and the links represent the logical connection between steps (e.g., 

flight,information,input is followed by validation/availability.processing). 

The data flow diagram (Chapter 12) can be used to assist in creating graphs of 

this type.  

Finite state modeling. The nodes represent different user observable states of the 

software (e.g., each of the “screens” that appear as an order entry clerk takes a phone 

order), and the links represent the transitions that occur to move from state to state 

(e.g., order-information is verified during inventory-availability look-up and is 

followed by customer-billing-information input). The state transition diagram can 

be used to assist in creating graphs of this type.  

Data flow modeling. The nodes are data objects and the links are the transformations 

that occur to translate one data object into another. For example, the node 

FICA.tax.withheld (FTW) is computed from  gross.wages (GW) using the 

relationship, FTW = 0.62 _ GW.  

Timing modeling. The nodes are program objects and the links are the sequential 

connections between those objects. Link weights are used to specify the required 

execution times as the program executes.  

  

A detailed discussion of each of these graph-based testing methods is beyond the 

scope of this book. The interested reader should see [BEI95] for a comprehensive 

discussion.  

  

It is worthwhile, however, to provide a generic outline of the graph-based testing 

approach.  

  

Graph-based testing begins with the definition of all nodes and node weights. That 

is, objects and attributes are identified. The data model (Chapter 12) can be used as 

a starting point, but it is important to note that many nodes may be program objects 



 

 

(not explicitly represented in the data model). To provide an indication of the start 

and stop points for the graph, it is useful to define entry and exit nodes.  

Once nodes have been identified, links and link weights should be established. In 

general, links should be named, although links that represent control flow between 

program objects need not be named.  

  

 SOFTWARE TESTING TECHNIQUES  

In many cases, the graph model may have loops (i.e., a path through the graph in 

which one or more nodes is encountered more than one time). Loop testing  can 

also be applied at the behavioral (black-box) level. The graph will assist in 

identifying those loops that need to be tested.  

  

Each relationship is studied separately so that test cases can be derived. The 

transitivity of sequential relationships is studied to determine how the impact of 

relationships propagates across objects defined in a graph. Transitivity can be 

illustrated by considering three objects, X, Y, and Z. Consider the following 

relationships:  

X is required to compute Y  

Y is required to compute Z  

Therefore, a transitive relationship has been established between X and Z:  

X is required to compute Z  

Based on this transitive relationship, tests to find errors in the calculation of Z must 

consider a variety of values for both X and Y.  

The symmetry of a relationship (graph link) is also an important guide to the design 

of test cases. If a link is indeed bidirectional (symmetric), it is important to test this 

feature. The UNDO feature [BEI95] in many personal computer applications 

implements limited symmetry. That is, UNDO allows an action to be negated after 

it has been completed. This should be thoroughly tested and all exceptions (i.e., 

places where UNDO cannot be used) should be noted. Finally, every node in the 

graph should have a relationship that leads back to itself; in essence, a “no action” 

or “null action” loop. These reflexive relationships should also be tested.  

  

As test case design begins, the first objective is to achieve node coverage. By this 

we mean that tests should be designed to demonstrate that no nodes have been 

inadvertently omitted and that node weights (object attributes) are correct.  

Next, link coverage is addressed. Each relationship is tested based on its properties. 

For example, a symmetric relationship is tested to demonstrate that it is, in fact, 



 

 

bidirectional. A transitive relationship is tested to demonstrate that transitivity is 

present.  

A reflexive relationship is tested to ensure that a null loop is present. When link 

weights have been specified, tests are devised to demonstrate that these weights are 

valid. Finally, loop testing is invoked Equivalence Partitioning.  

  

Equivalence partitioning is a black-box testing method that divides the input domain 

of a program into classes of data from which test cases can be derived. An ideal test 

case single-handedly uncovers a class of errors (e.g., incorrect processing of all 

character data) that might otherwise require many cases to be executed before the 

general error is observed. Equivalence partitioning strives to define a test case that 

uncovers classes of errors, thereby reducing the total number of test cases that must 

be developed.  

Test case design for equivalence partitioning is based on an evaluation of 

equivalence classes for an input condition. Using concepts introduced in the 

preceding section, if a set of objects can be linked by relationships that are 

symmetric, transitive, and reflexive, an equivalence class is present [BEI95]. An 

equivalence class represents a set of valid or invalid states for input conditions.  

Typically, an input condition is either a specific numeric value, a range of values, a 

set of related values, or a Boolean condition. Equivalence classes may be defined 

according to the following guidelines:  

1. If an input condition specifies a range, one valid and two invalid equivalence 

classes are defined.  

2. If an input condition requires a specific value, one valid and two invalid 

equivalence classes are defined.  

3. If an input condition specifies a member of a set, one valid and one invalid 

equivalence class are defined.  

4. If an input condition is Boolean, one valid and one invalid class are defined.  

As an example, consider data maintained as part of an automated banking 

application.  

The user can access the bank using a personal computer, provide a six-digit 

password, and follow with a series of typed commands that trigger various banking 

functions. During the log-on sequence, the software supplied for the banking 

applicationaccepts data in the form area code—blank or three-digit number prefix—

three-digit number not beginning with 0 or 1 suffix—four-digit number password—

six digit alphanumeric string commands—check, deposit, bill pay, and the like The 

input conditions associated with each data element for the banking application can 

be specified as area code: Input condition, Boolean—the area code may or may not 



 

 

be present. Input condition, range—values defined between 200 and 999, with 

specific exceptions. prefix: Input condition, range—specified value >200 Input 

condition, value—four-digit length password: Input condition, Boolean—a 

password may or may not be present. Input condition, value—sixcharacter string. 

command: Input condition, set—containing commands noted previously. Applying 

the guidelines for the derivation of equivalence classes, test cases for each input 

domain data item can be developed and executed. Test cases are selected that the 

largest number of attributes of an equivalence class are exercised at once.  

  

Boundary Value Analysis  

For reasons that are not completely clear, a greater number of errors tends to occur 

at the boundaries of the input domain rather than in the "center." It is for this reason 

that boundary value analysis (BVA) has been developed as a testing technique. 

Boundary value analysis leads to a selection of test cases that exercise bounding 

values.  

Boundary value analysis is a test case design technique that complements 

equivalence partitioning. Rather than selecting any element of an equivalence class, 

BVA leads to the selection of test cases at the "edges" of the class. Rather than 

focusing solely on input conditions, BVA derives test cases from the output domain 

as well [MYE79].  

Guidelines for BVA are similar in many respects to those provided for equivalence 

partitioning:  

1. If an input condition specifies a range bounded by values a and b, test cases 

should be designed with values a and b and just above and just below a and b.  

2. If an input condition specifies a number of values, test cases should be 

developed that exercise the minimum and maximum numbers. Values just above and 

below minimum and maximum are also tested.  

3. Apply guidelines 1 and 2 to output conditions. For example, assume that a 

temperature vs. pressure table is required as output from an engineering analysis 

program. Test cases should be designed to create an output report that produces the 

maximum (and minimum) allowable number of table entries.  

4. If internal program data structures have prescribed boundaries (e.g., an array 

has a defined limit of 100 entries), be certain to design a test case to exercise the data 

structure at its boundary. Most software engineers intuitively perform BVA to some 

degree. By applying these guidelines, boundary testing will be more complete, 

thereby having a higher likelihood for error detection.  

Comparison Testing  



 

 

There are some situations (e.g., aircraft avionics, automobile braking systems) in 

which the reliability of software is absolutely critical. In such applications redundant 

hardware and software are often used to minimize the possibility of error. When 

redundant software is developed, separate software engineering teams develop 

independent versions of an application using the same specification. In such 

situations, each version can be tested with the same test data to ensure that all provide 

identical output. Then all versions are executed in parallel with real-time comparison 

of results to ensure consistency.  

Using lessons learned from redundant systems, researchers (e.g., [BRI87]) have 

suggested that independent versions of software be developed for critical 

applications, even when only a single version will be used in the delivered computer-

based system. These independent versions form the basis of a black-box testing 

technique called comparison testing or back-to-back testing [KNI89].  

  

When multiple implementations of the same specification have been produced, test 

cases designed using other black-box techniques (e.g., equivalence partitioning) are 

provided as input to each version of the software. If the output from each version is 

the same, it is assumed that all implementations are correct. If the output is different, 

each of the applications is investigated to determine if a defect in one or more 

versions is responsible for the difference. In most cases, the comparison of outputs 

can be performed by an automated tool.  

Comparison testing is not foolproof. If the specification from which all versions have 

been developed is in error, all versions will likely reflect the error. In addition, if 

each of the independent versions produces identical but incorrect results, condition 

testing will fail to detect the error.  

Orthogonal Array Testing There are many applications in which the input domain is 

relatively limited. That is, the number of input parameters is small and the values 

that each of the parameters may take are clearly bounded. When these numbers are 

very small (e.g., three inpu parameters taking on three discrete values each), it is 

possible to consider every input permutation and exhaustively test processing of the 

input domain. However, as thenumber of input values grows and the number of 

discrete values for each data item increases, exhaustive testing become impractical 

or impossible. Orthogonal array testing can be applied to problems in which the 

input domain is relatively small but too large to accommodate exhaustive testing. 

The orthogonal array testing method is particularly useful in finding errors 

associated with region faults—an error category associated with faulty logic within 

a software component.To illustrate the difference between orthogonal array testing 

and more conventional “one input item at a time” approaches, consider a system that 

has three input items, X, Y, and Z. Each of these input items has three discrete values 



 

 

associated withit. There are 33 = 27 possible test cases. Phadke [PHA97] suggests a 

geometric view of the possible test cases associated with X, Y, and Z illustrated in 

Figure. Referring to the figure, one input item at a time may be varied in sequence 

along each input axis. This results in relatively limited coverage of the input domain 

(represented by the left-hand cube in the figure  

 
domain,” as illustrated in the right-hand cube in Figure 17.10. Test coverage across 

the input domain is more complete.  

To illustrate the use of the L9 orthogonal array, consider the send function for a fax 

application. Four parameters, P1, P2, P3, and P4, are passed to the send function.  

Each takes on three discrete values. For example, P1 takes on values:  

P1 = 1, send it now  

P1 = 2, send it one hour later  

P1 = 3, send it after midnight  

P2, P3, and P4 would also take on values of 1, 2 and 3, signifying other send 

functions.  

If a “one input item at a time” testing strategy were chosen, the following sequence 

of tests (P1, P2, P3, P4) would be specified: (1, 1, 1, 1), (2, 1, 1, 1), (3, 1, 1, 1), (1, 

2, 1,1), (1, 3, 1, 1), (1, 1, 2, 1), (1, 1, 3, 1), (1, 1, 1, 2), and (1, 1, 1, 3). Phadke 

[PHA97] assesses these test cases in the following manner:  

Such test cases are useful only when one is certain that these test parameters do not 

interact.  

They can detect logic faults where a single parameter value makes the software 

malfunction.  

These faults are called single mode faults. This method cannot detect logic faults that 

cause malfunction when two or more parameters simultaneously take certain values; 



 

 

that is, it cannot detect any interactions. Thus its ability to detect faults is limited. 

Given the relatively small number of input parameters and discrete values, 

exhaustive testing is possible. The number of tests required is 34 = 81, large, but 

manageable.  All faults associated with data item permutation would be found, but 

the effort required is relatively high. Phadke [PHA97] assesses the result of tests 

using the L9 orthogonal array in the following manner:  

Detect and isolate all single mode faults. A single mode fault is a consistent 

problem with any level of any single parameter. For example, if all test cases of 

factor P1 = 1 cause  an error condition, it is a single mode failure. In this example 

tests 1, 2 and 3 will show errors. By analyzing the information about which tests 

show errors, one can identify which parameter values cause the fault. In this 

example, by noting that tests 1, 2, and 3 cause an error, one can isolate [logical 

processing associated with “send it now” (P1 = 1)] as the source of the error. Such 

an isolation of fault is important to fix the fault.  

Detect all double mode faults. If there exists a consistent problem when specific 

levels of two parameters occur together, it is called a double mode fault. Indeed, a 

double mode fault is an indication of pairwise incompatibility or harmful interactions 

between two test parameters.  

Multimode faults. Orthogonal arrays [of the type shown] can assure the detection 

of only single and double mode faults. However, many multi-mode faults are also 

detected by these tests.  



 

 

 new module 

is added as part of integration testing, the software changes. New data flow paths are 

established, new I/O may occur, and new control logic is invoked. These changes 

may cause problems with functions that previously worked   flawlessly. In the 

context of an integration test strategy, regression testing is the reexecution of some 

subset of tests that have already been conducted to ensure that changes have not 

propagated unintended side effects.  

In a broader context, successful tests (of any kind) result in the discovery of errors, 

and errors must be corrected. Whenever software is corrected, some aspect of the 

software configuration (the program, its documentation, or the data that support it) 

is changed. Regression testing is the activity that helps to ensure that changes (due 

to testing or for other reasons) do not introduce unintended behavior or additional 

errors.  

The regression test suite (the subset of tests to be executed) contains three different 

classes of test cases:  

• A representative sample of tests that will exercise all software functions.  

• Additional tests that focus on software functions that are likely to be affected by 

the change.  

• Tests that focus on the software components that have been changed.  



 

 

As integration testing proceeds, the number of regression tests can grow quite large.  

Therefore, the regression test suite should be designed to include only those tests that 

address one or more classes of errors in each of the major program functions. It is 

impractical and inefficient to re-execute every test for every program function once 

a change has occurred  

  

UNIT TESTING:  

  

Unit testing focuses verification effort on the smallest unit of software design—the 

software component or module. Using the component-level design description as a 

guide, important control paths are tested to uncover errors within the boundary of 

the module. The relative complexity of tests and uncovered errors is limited by the 

constrained scope established for unit testing. The unit test is white-box oriented, 

and the step can be conducted in parallel for multiple components.  

  

Unit Test Considerations:  

  

The tests that occur as part of unit tests are illustrated schematically in Figure 18.4. 

The module interface is tested to ensure that information properly flows into and 

outof the program unit under test. The local data structure is examined to ensure that 

data stored temporarily maintains its integrity during all steps in an algorithm's 

execution.  

Boundary conditions are tested to ensure that the module operates properly at 

boundaries established to limit or restrict processing. All independent paths (basis 

paths) through the control structure are exercised to ensure that all statements in a 

module have been executed at least once. And finally, all error handling paths are 

tested.  



 

 

    
Tests of data flow across a module interface are required before any other test is 

initiated. If data do not enter and exit properly, all other tests are moot. In addition, 

local data structures should be exercised and the local impact on global data should 

be ascertained (if possible) during unit testing.  

  

Selective testing of execution paths is an essential task during the unit test. Test cases 

should be designed to uncover errors due to erroneous computations, incorrect 

comparisons, or improper control flow. Basis path and loop testing are effective 

techniques for uncovering a broad array of path errors.  

  

Among the more common errors in computation are (1) misunderstood or incorrect 

arithmetic precedence, (2) mixed mode operations, (3) incorrect initialization, (4) 

precision inaccuracy, (5) incorrect symbolic representation of an expression. 

Comparison and control flow are closely coupled to one another (i.e., change of flow 

frequently occurs after a comparison). Test cases should uncover errors such as  

(1) comparison of different data types, (2) incorrect logical operators or precedence, 

(3) expectation of equality when precision error makes equality unlikely, (4) 

incorrect comparison of variables, (5) improper or nonexistent loop termination, (6) 

failure to exit when divergent iteration is encountered, and (7) improperly modified 

loop variables.  



 

 

Good design dictates that error conditions be anticipated and error-handling paths 

set up to reroute or cleanly terminate processing when an error does occur. Yourdon 

[YOU75] calls this approach antibugging. Unfortunately, there is a tendency to 

incorporate error handling into software and then never test it. A true story may serve 

to   illustrate:  

A major interactive design system was developed under contract. In one transaction 

processing module, a practical joker placed the following error handling message 

after a series of conditional tests that invoked various control flow branches: 

ERROR! THERE IS NO WAY YOU CAN GET HERE. This  

"error message" was uncovered by a customer during user training! Among the 

potential errors that should be tested when error handling is evaluated are 1. Error 

description is unintelligible.  

2. Error noted does not correspond to error encountered.  

3. Error condition causes system intervention prior to error handling.  

4. Exception-condition processing is incorrect.  

5. Error description does not provide enough information to assist in the location of 

the cause of the error.  

Boundary testing is the last (and probably most important) task of the unit test step. 

Software often fails at its boundaries. That is, errors often occur when the nth 

element of an n-dimensional array is processed, when the ith repetition of a loop 

with  



 

 

  
i passes is invoked, when the maximum or minimum allowable value is encountered. 

Test cases that exercise data structure, control flow, and data values just below, at, 

and just above maxima and minima are very likely to uncover errors.   

Unit testing is normally considered as an adjunct to the coding step. After source 

level code has been developed, reviewed, and verified for correspondence to 

component level design, unit test case design begins. A review of design information 

provides guidance for establishing test cases that are likely to uncover errors in each 

of the categories discussed earlier. Each test case should be coupled with a set of 

expected results.  

Because a component is not a stand-alone program, driver and/or stub software must 

be developed for each unit test. The unit test environment is illustrated in Figure  

In most applications a driver is nothing more than a "main program" that accepts 

test case data, passes such data to the component (to be tested), and prints relevant 

results. Stubs serve to replace modules that are subordinate (called by) the 

component to be tested. A stub or "dummy subprogram" uses the subordinate 

module's interface, may do minimal data manipulation, prints verification of 

entry, and returns control to the module undergoing testing.  

Drivers and stubs represent overhead. That is, both are software that must be written 

(formal design is not commonly applied) but that is not delivered with the final 



 

 

software product. If drivers and stubs are kept simple, actual overhead is relatively 

low. Unfortunately, many components cannot be adequately unit tested with 

"simple" overhead software. In such cases, complete testing can be postponed until 

the integration test step (where drivers or stubs are also used). Unit testing is 

simplified when a component with high cohesion is designed. When only one 

function is addressed by a component, the number of test cases is reduced and errors 

can be more easily predicted and uncovered.  

  

INTEGRATION TESTING:  

A neophyte in the software world might ask a seemingly legitimate question once all 

modules have been unit tested: "If they all work individually, why do you doubt that 

they'll work when we put them together?" The problem, of course, is "putting them 

together"—interfacing. Data can be lost across an interface; one module can have an 

inadvertent, adverse  affect on another; sub functions, when combined, may not 

produce the desired major function; individually acceptable imprecision may be 

magnified to unacceptable levels; global data structures can present problems. Sadly, 

the list goes on and on .Integration testing is a systematic technique for constructing 

the program structure while at the same time conducting tests to uncover errors 

associated with interfacing.  

  

  

The objective is to take unit tested components and build a program structure that 

has been dictated by design.  

There is often a tendency to attempt non incremental integration; that is, to construct 

the program using a "big bang" approach. All components are combined in advance. 

The entire program is tested as a whole. And chaos usually results! A set of errors is 

encountered. Correction is difficult because isolation of causes is complicated by the 

vast expanse of the entire program. Once these errors are corrected, new ones appear 

and the process continues in a seemingly endless loop. Incremental integration is the 

antithesis of the big bang approach. The program  

is constructed and tested in small increments, where errors are easier to isolate and 

correct; interfaces are more likely to be tested completely; and a systematic test 

approach may be applied. In the sections that follow, a number of different 

incremental integration strategies are discussed.  

Top-down Integration:  

Top-down integration testing is an incremental approach to construction of program 

structure. Modules are integrated by moving downward through the control 

hierarchy, beginning with the main control module (main program). Modules 



 

 

subordinate(and ultimately subordinate) to the main control module are incorporated 

into the structure in either a depth-first or breadth-first manner. Referring to Figure 

18.6, depth-first integration would integrate all components on a major control path 

of the structure. Selection of a major path is somewhat arbitrary and depends on 

application-specific characteristics.   

  

For example, selecting the lefth and path, components M1, M2 , M5 would be 

integrated first. Next, M8 or (if neces-sary for proper functioning of M2) M6 would 

be integrated. Then, the central and right hand control paths are built. Breadth-first 

integration incorporates all components directly subordinate at each level, moving 

across the structure horizontally. From the figure, components M2, M3, and M4 (a 

replacement for stub S4) would be integrated first. The next control level, M5, M6, 

and so on, follows.  

  

The integration process is performed in a series of five steps:  

1. The main control module is used as a test driver and stubs are substituted for all 

components directly subordinate to the main control module.  

2. Depending on the integration approach selected (i.e., depth or breadth first), 

subordinate stubs are replaced one at a time with actual components.  

3. Tests are conducted as each component is integrated.  

4. On completion of each set of tests, another stub is replaced with the real 

component.  

5. Regression testing (Section 18.4.3) may be conducted to ensure that new errors 

have not been introduced.  

The process continues from step 2 until the entire program structure is built. The 

top-down integration strategy verifies major control or decision points early in the 

test process. In a well-factored program structure, decision making occurs at 

upper levels in the hierarchy and is therefore encountered first. If major control 

problems do exist, early recognition is essential. If depth-first integration is 

selected, a complete function of the software may be implemented and 

demonstrated. For example, consider a classic transaction structure (Chapter 14) 

in which a complex series of interactive inputs is requested, acquired, and 

validated via an incoming path.   



 

 

   
The integration process is performed in a series of five steps:  

1. The main control module is used as a test driver and stubs are substituted for all 

components directly subordinate to the main control module.  

2. Depending on the integration approach selected (i.e., depth or breadth first), 

subordinate stubs are replaced one at a time with actual components.  

3. Tests are conducted as each component is integrated.  

4. On completion of each set of tests, another stub is replaced with the real 

component.  

5. Regression testing (Section 18.4.3) may be conducted to ensure that new errors 

have not been introduced.  

The process continues from step 2 until the entire program structure is built.  

The top-down integration strategy verifies major control or decision points early  

in the test process. In a well-factored program structure, decision making occurs at 

upper levels in the hierarchy and is therefore encountered first. If major control 

problems  

do exist, early recognition is essential. If depth-first integration is selected, a 

complete function of the software may be implemented and demonstrated. For 

example, consider a classic transaction structure (Chapter 14) in which a complex 

series of interactive inputs is requested, acquired, and validated via an incoming 

path.   

  



 

 

Top-down strategy sounds relatively uncomplicated, but in practice, logistical 

problems can arise. The most common of these problems occurs when processing at 

low levels in the hierarchy is required to adequately test upper levels. Stubs replace 

low level modules at the beginning of top-down testing; therefore, no significant data 

can flow upward in the program structure. The tester is left with three choices: (1) 

delay many tests until stubs are replaced with actual modules, (2) develop stubs that 

perform limited functions that simulate the actual module, or (3) integrate the 

software from the bottom of the hierarchy upward.  

  

The first approach (delay tests until stubs are replaced by actual modules) causes us 

to loose some control over correspondence between specific tests and incorporation 

of specific modules. This can lead to difficulty in determining the cause of errors 

and tends to violate the highly constrained nature of the top-down approach. The 

second approach is workable but can lead to significant overhead, as stubs become 

more and more complex.   

Bottom-up integration testing, as its name implies, begins construction and testing 

with atomic modules (i.e., components at the lowest levels in the program structure).  

Because components are integrated from the bottom up, processing required for 

components subordinate to a given level is always available and the need for stubs 

is eliminated.  

A bottom-up integration strategy may be implemented with the following steps: 1. 

Low-level components are combined into clusters (sometimes called builds) that 

perform a specific software sub function.  

2. A driver (a control program for testing) is written to coordinate test case input and 

output.  

3. The cluster is tested.  

4. Drivers are removed and clusters are combined moving upward in the program 

structure.  

Integration follows the pattern illustrated in Figure . Components are combined to 

form clusters 1, 2, and 3. Each of the clusters is tested using a driver (shown as a 

dashed block). Components in clusters 1 and 2 are subordinate to Ma. Drivers D1 

and D2 are removed and the clusters are interfaced directly to Ma. Similarly, 

driver D3 for cluster 3 is removed prior to integration with module Mb. Both  



 

 

 
the top two levels of program structure are integrated top down, the number of 

drivers can be reduced substantially and integration of clusters is greatly simplified.  

Regression Testing  

Each time a new module is added as part of integration testing, the software changes. 

New data flow paths are established, new I/O may occur, and new control logic is 

invoked. These changes may cause problems with functions that previously worked 

flawlessly. In the context of an integration test strategy, regression testing is the 

reexecution of some subset of tests that have already been conducted to ensure that 

changes have not propagated unintended side effects.  

  

In a broader context, successful tests (of any kind) result in the discovery of errors, 

and errors must be corrected. Whenever software is corrected, some aspect of the 

software configuration (the program, its documentation, or the data that support it) 

is changed. Regression testing is the activity that helps to ensure that changes (due 

to testing or for other reasons) do not introduce unintended behavior or additional 

errors.  

  

Regression testing may be conducted manually, by re-executing a subset of all test 

cases or using automated capture/playback tools. Capture/playback tools enable the 

software engineer to capture test cases and results for subsequent playback and 

comparison.  



 

 

The regression test suite (the subset of tests to be executed) contains three different 

classes of test cases:  

• A representative sample of tests that will exercise all software functions.  

• Additional tests that focus on software functions that are likely to be affected by 

the change.  

• Tests that focus on the software components that have been changed.  

As integration testing proceeds, the number of regression tests can grow quite large.  

Therefore, the regression test suite should be designed to include only those tests that 

address one or more classes of errors in each of the major program functions. It is 

impractical and inefficient to re-execute every test for every program function once 

a change has occurred.  

Smoke Testing  

Smoke testing is an integration testing approach that is commonly used when “shrink 

wrapped” software products are being developed. It is designed as a pacing 

mechanism for time-critical projects, allowing the software team to assess its project 

on  a requent basis. In essence, the smoke testing approach encompasses the 

following activities:  

1. Software components that have been translated into code are integrated into a 

“build.” A build includes all data files, libraries, reusable modules, and engineered 

components that are required to implement one or more product functions.  

2. A series of tests is designed to expose errors that will keep the build from 

properly performing its function. The intent should be to uncover “show stopper” 

errors that have the highest likelihood of throwing the software project behind 

schedule.  

3. The build is integrated with other builds and the entire product (in its current 

form) is smoke tested daily. The integration approach may be top down or bottom 

up. The daily frequency of testing the entire product may surprise some readers. 

However,  frequent tests give both managers and practitioners a realistic assessment 

of integration testing progress. McConnell [MCO96] describes the smoke test in the 

following manner:  

The smoke test should exercise the entire system from end to end. It does not have 

to be exhaustive, but it should be capable of exposing major problems. The smoke 

test should be thorough enough that if the build passes, you can assume that it is 

stable enough to be tested more thoroughly. Smoke testing might be characterized 

as a rolling integration strategy. The software is rebuilt (with new components 

added) and exercised every day.  

SOFTWARE TESTING STRATEGIES  



 

 

Smoke testing provides a number of benefits when it is applied on complex, 

timecritical software engineering projects:  

• Integration risk is minimized. Because smoke tests are conducted daily, 

incompatibilities and other show-stopper errors are uncovered early, thereby 

reducing the likelihood of serious schedule impact when errors are uncovered. • The 

quality of the end-product is improved. Because the approach is construction 

(integration) oriented, smoke testing is likely to uncover both functional errors and 

architectural and component-level design defects. If these defects are corrected 

early, better product quality will result.  

• Error diagnosis and correction are simplified. Like all integration testing 

approaches, errors uncovered during smoke testing are likely to be associated with 

“new software increments”—that is, the software that has just been added to the 

build(s) is a probable cause of a newly discovered error.  

• Progress is easier to assess. With each passing day, more of the software has 

been integrated and more has been demonstrated to work. This improves team 

morale and gives managers a good indication that progress is being made.  

VALIDATION TESTING  

At the culmination of integration testing, software is completely assembled as a 

package,  

interfacing errors have been uncovered and corrected, and a final series of software 

tests—validation testing—may begin. Validation can be defined in many ways, but 

a simple (albeit harsh) definition is that validation succeeds when software functions 

in a manner that can be reasonably expected by the customer. At this point a battle-

hardened software developer might protest: "Who or what is the arbiter of reasonable 

expectations?"  

Reasonable expectations are defined in the Software Requirements Specification— 

a document (Chapter 11) that describes all user-visible attributes of the software. 

The specification contains a section called Validation Criteria. Information 

contained in that section forms the basis for a validation testing approach.  

Validation Test Criteria  

Software validation is achieved through a series of black-box tests that demonstrate 

conformity with requirements. A test plan outlines the classes of tests to be 

conducted and a test procedure defines specific test cases that will be used to 

demonstrate conformity with requirements. Both the plan and procedure are 

designed to ensure that all functional requirements are satisfied, all behavioral 

characteristics are achieved, all performance requirements are attained, 

documentation is correct, and human engineered and other requirements are met 

(e.g., transportability, compatibility, error recovery, maintainability). After each 



 

 

validation test case has been conducted, one of two possible conditions exist: (1) The 

function or performance characteristics conform to specification and are accepted or 

(2) a deviation from specification is uncovered and a deficiency list is created. 

Deviation or error discovered at this stage in a project can rarely be corrected prior 

to scheduled delivery. It is often necessary to negotiate with the customer to establish 

a method for resolving deficiencies.  

An important element of the validation process is a configuration review. The intent 

of the review is to ensure that all elements of the software configuration have been 

properly developed, are cataloged, and have the necessary detail to bolster the 

support phase of the software life cycle.  

  

ALPHA AND BETA TESTING  

  

It is virtually impossible for a software developer to foresee how the customer will 

really use a program. Instructions for use may be misinterpreted; strange 

combinations of data may be regularly used; output that seemed clear to the tester 

may be unintelligible to a user in the field. When custom software is built for one 

customer, a series of acceptance tests are conducted to enable the customer to 

validate all requirements. Conducted by the enduser rather than software engineers, 

an acceptance test can range from an informal "test drive" to a planned and 

systematically executed series of tests. In fact, acceptance testing can be conducted 

over a period of weeks or months, thereby uncovering cumulative errors that might 

degrade the system over time. If software is developed as a product to be used by 

many customers, it is impractical    to perform formal acceptance tests with each one. 

Most software product builderuse a process called alpha and beta testing to uncover 

errors that only the end-user seems able to find.  

The alpha test is conducted at the developer's site by a customer. The software is 

used in a natural setting with the developer "looking over the shoulder" of the user 

and recording errors and usage problems. Alpha tests are conducted in a controlled 

environment.  

  

SYSTEM TESTING  

  

At the beginning of this book, we stressed the fact that software is only one element 

of a larger computer-based system. Ultimately, software is incorporated with other 

system elements (e.g., hardware, people, information), and a series of system 

integration and validation tests are conducted. These tests fall outside the scope of 

the software process and are not conducted solely by software engineers. However, 



 

 

steps taken during software design and testing can greatly improve the probability 

of successful software integration in the larger system.  

  

A classic system testing problem is "finger-pointing." This occurs when an error is 

uncovered, and each system element developer blames the other for the problem. 

Rather than indulging in such nonsense, the software engineer should anticipate 

potential interfacing problems and (1) design error-handling paths that test all 

information coming from other elements of the system, (2) conduct a series of tests 

that simulate bad data or other potential errors at the software interface, (3) record 

the results of tests to use as "evidence" if finger-pointing does occur, and (4) 

participate in planning and design of system tests to ensure that software is 

adequately tested.  

  

System testing is actually a series of different tests whose primary purpose is to fully 

exercise the computer-based system. Although each test has a different purpose, all 

work to verify that system elements have been properly integrated and perform 

allocated functions. In the sections that follow, we discuss the types of system tests 

[BEI84] that are worthwhile for software-based systems.  

  

Recovery Testing  

  

Many computer based systems must recover from faults and resume processing with 

in a  prespecified time. In some cases, a system must be fault tolerant; that is, 

processing faults must not cause overall system function to cease. In other cases, a 

system failure must be corrected within a specified period of time or severe 

economic damage will occur.  

Recovery testing is a system test that forces the software to fail in a variety of ways 

and verifies that recovery is properly performed. If recovery is automatic 

(performedby the system itself), reinitialization, check pointing mechanisms, data 

recovery, and restart are evaluated for correctness. If recovery requires human 

intervention, the mean-time-to-repair (MTTR) is evaluated to determine whether it 

is within acceptablelimits.  

  

Security Testing  

  

Any computer-based system that manages sensitive information or causes actions 

that can improperly harm (or benefit) individuals is a target for improper or illegal 

penetration. Penetration spans a broad range of activities: hackers who attempt to 

penetrate systems for sport; disgruntled employees who attempt to penetrate for 



 

 

revenge; dishonest individuals who attempt to penetrate for illicit personal gain. 

Security testing attempts to verify that protection mechanisms built into a system 

will, in fact, protect it from improper penetration.   

  

  

To quote Beizer [BEI84]: "The system's security must, of course, be tested for 

invulnerability from frontal attack—but must also be tested for invulnerability from 

flank or rear attack."  

During security testing, the tester plays the role(s) of the individual who desires to 

penetrate the system. Anything goes! The tester may attempt to acquire passwords 

through external clerical means; may attack the system with custom software 

designed to breakdown any defenses that have been constructed; may overwhelm 

the system, thereby denying service to others; may purposely cause system errors, 

hoping to penetrate during recovery; may browse through insecure data, hoping to 

find the key to system entry.  

Given enough time and resources, good security testing will ultimately penetrate a 

system. The role of the system designer is to make penetration cost more than the 

value of the information that will be obtained.  

  

Stress Testing  

  

During earlier software testing steps, white-box and black-box techniques resulted 

in thorough evaluation of normal program functions and performance. Stress tests 

are designed to confront programs with abnormal situations. In essence, the tester 

who performs stress testing asks: "How high can we crank this up before it fails?" 

Stress testing executes a system in a manner that demands resources in abnormal 

quantity, frequency, or volume.  

  



 

 

Performance Testing: 

  
For real-time and embedded systems, software that provides required function but 

does not conform to performance requirements is unacceptable. Performance testing 

is designed to test the run-time performance of software within the context of an 

integrated system. Performance testing occurs throughout all steps in the testing 

process. Even at the unit level, the performance of an individual module may be 

assessed as white-box tests are conducted. However, it is not until all system 

elements are fully integrated that the true performance of a system can be 

ascertained.  

Performance tests are often coupled with stress testing and usually require both 

hardware and software instrumentation. That is, it is often necessary to measure 

resource utilization (e.g., processor cycles) in an exacting fashion. External instru- 

mentation can monitor execution intervals, log events (e.g., interrupts) as they occur, 

and sample machine states on a regular basis. By instrumenting a system, the tester 

can uncover situations that lead to degradation and possible system failure.  

  

THE ART OF DEBUGGING:  

  

Software testing is a process that can be systematically planned and specified. Test 

case design can be conducted, a strategy can be defined, and results can be evaluated 

against prescribed expectations.  

Debugging occurs as a consequence of successful testing. That is, when a test case 

uncovers an error, debugging is the process that results in the removal of the error. 



 

 

Although debugging can and should be an orderly process, it is still very much an 

art.  

A software engineer, evaluating the results of a test, is often confronted with a 

"symptomatic" indication of a software problem. That is, the external manifestation 

of the error and the internal cause of the error may have no obvious relationship to 

one another. The poorly understood mental process that connects a symptom to a 

cause is debugging.  

  

The Debugging Process:  

  

Debugging is not testing but always occurs as a consequence of testing.4 Referring 

to Figure , the debugging process begins with the execution of a test case. Results 

are assessed and a lack of correspondence between expected and actual performance 

is encountered.   
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of an underlying cause as yet hidden. The debugging process attempts to match 

symptom with cause, thereby leading to error correction.  

The debugging process will always have one of two outcomes: (1) the cause will be 

found and corrected, or (2) the cause will not be found. In the latter case, the person 

performing debugging may suspect a cause, design a test case to help validate that 

suspicion, and work toward error correction in an iterative fashion.  

Why is debugging so difficult? In all likelihood, human psychology (see the next 

section) has more to do with an answer than software technology. However, a few 

characteristics of bugs provide some clues:  

1. The symptom and the cause may be geographically remote. That is, the 

symptom may appear in one part of a program, while the cause may actually be 

located at a site that is far removed. Highly coupled program structures 

(Chapter 13) exacerbate this situation.  

2. The symptom may disappear (temporarily) when another error is 

corrected. 3. The symptom may actually be caused by nonerrors (e.g., round-

off inaccuracies).  

4. The symptom may be caused by human error that is not easily traced.  

5. The symptom may be a result of timing problems, rather than processing 

problems.  

6. It may be difficult to accurately reproduce input conditions (e.g., a real-time 

application in which input ordering is indeterminate).  



 

 

7. The symptom may be intermittent. This is particularly common in embedded 

systems that couple hardware and software inextricably.  

8. The symptom may be due to causes that are distributed across a number of tasks 

running on different processors [CHE90].  

  

Once a bug has been found, it must be corrected. But, as we have already noted, the 

correction of a bug can introduce other errors and therefore do more harm than good. 

Van Vleck [VAN89] suggests three simple questions that every software engineer 

should ask before making the "correction" that removes the cause of a bug:  

1. Is the cause of the bug reproduced in another part of the 

program? In many situations, a program defect is caused by an erroneous 

pattern of logic that may be reproduced elsewhere. Explicit consideration of 

the logical pattern may result in the discovery of other errors.  

2. What "next bug" might be introduced by the fix I'm about to 

make? Before the correction is made, the source code (or, better, the design) 

should be evaluated to assess coupling of logic and data structures. If the 

correction is to be made in a highly coupled section of the program, special 

care must be taken when any change is made.  

3. What could we have done to prevent this bug in the first place? 

This question is the first step toward establishing a statistical software quality 

assurance approach (Chapter 8). If we correct the process as well as the 

product, the bug will be removed from the current program and may be 

eliminated from all future programs  

  

  

  



 

 

 

 

CODING AND REFACTORING:  

  

Code refactoring is one of the key terms in software development and today I would 

like to talk about code refactoring techniques that might increase your efficiency!  

But first, let’s agree on what is code refactoring! Basically, code refactoring is the 

process of changing a program’s source code without modifying its external 

functional behavior, in order to improve some of the nonfunctional attributes of the 

software. In other words, code refactoring is the process of clarifying and 

simplifying the design of existing code, without changing its behavior. Nowadays, 

agile software development is literally a must and agile teams are maintaining and 

extending their code a lot from iteration to iteration, and without continuous 

refactoring, this is hard to do.   

This is because un-refactored code tends to rot: unhealthy dependencies between 

classes or packages, bad allocation of class responsibilities, way too many 

responsibilities per method or class, duplicated code, and many other varieties of 

confusion and clutter. So, the advantages include improved code readability and 

reduced complexity; these can improve source-code maintainability and create a 

more expressive internal architecture.  

Another reason why you should read it is that it is written by legends of our time, by 

people who actually tried it first and developed the concept! There are other 

interesting books about this topic and you can find them here, but this one is a high 

priority one.  

   

Some tips for doing code refactoring techniques right  



 

 

     

Code refactoring should be done as a series of small changes, each of which makes the 

existing code slightly better while still leaving the program in working order.  

Don’t mix a whole bunch of refactorings into one big change.  

 

  

When you do refactoring, you should definitely do it using TDD and CI1. Without 

being able to run those tests after each little step in a refactoring, you create a risk of 

introducing bugs.  

  The code should become cleaner.  



 

 

  New functionality should not be created during refactoring. Do not mix refactoring 

and direct development of new features. Try to separate these processes at least 

within the confines of individual commits.  

   

Benefits of code refactoring:  

See the whole picture:If you have one main method that handles all of the 

functionality, it’s most likely way too long and incredibly complex. But if it’s broken 

down into parts, it’s easy to see what is really being done.  

Make it readable for your team  

Make it easy to understand for your peers, don’t write it for yourself, think on the long-

term.  

Maintainability  

Integration of updates and upgrades is a continuous process that is unavoidable and 

should be welcomed. When the codebase is unorganized and built on weak 

foundation, developers are often hesitant to make changes. But with code 

refactoring, organized code, the product will be built on a clean foundation and will 

be ready for future updates.  

Efficiency  

Code refactoring may be considered as investment, but it gets good results. You 

reduce the effort required for future changes to the code, either by you or other 

developers, thus improving efficiency.  

Reduce complexity  

Make it easier for you and your team to work on the project.  

   



 

 

List of main code refactoring techniques  

   

There are many code refactoring techniques and I do not want to cover them all, as 

this post would end up becoming a book in itself. So, I decided to pick the ones we 

feel are the most common and useful.  

   

Red-green refactoring:  

  

Lets start by briefly talking about the very popular red-green code refactoring 

technique. Red Green Refactor is the Agile engineering pattern which underpins Test 

Driven Development. Characterized by a “test-first” approach to design and 

implementation. This lays the foundation for all forms of refactoring. You 

incorporate refactoring into the test driven development cycle by starting with a 

failing “red” test, writing the simplest code possible to get the test to pass “green” 

and finally work on improving and enhancing your code while keeping the test 

“green”. This approach is about how one can seamlessly integrate refactoring into 

your overall development process and work towards keeping code clean. There are 

two distinct parts to this: writing code that adds a new function to your system, and 

improving the code that does this function. The important thing is to remember to 

not do both at the same time during the workflow.  

   

Preparatory refactoring :  

  

As a developer, there are things you can do to your codebase to make the building 

of your next feature a little more painless. Martin Fowler calls this preparatory 

refactoring. This again can be executed using the red-green technique described 

above. Preparatory refactoring can also involve paying down technical debt that was 

accumulated during the earlier phases of feature development. Even though  



 

 

the end-users may not see eye to eye with the engineering team on such efforts, the 

developers almost always appreciate the value of a good refactoring exercise.  

   

Branching by abstraction refactoring:  

  

Abstraction has its own group of refactoring techniques, primarily associated with 

moving functionality along the class inheritance hierarchy, creating new classes and 

interfaces, and replacing inheritance with delegation and vice versa. For example: 

Pull up field, pull up method, pull up constructor body, push down field, push down 

method, extract subclass, extract superclass, extract interface, collapse hierarchy, 

form template method, replace inheritance with delegation, replace delegation with 

Inheritance, etc.  

  

There are two types of refactoring efforts that is classified based on scope and 

complexity. Branching by abstraction is a technique that some of the teams use to 

take on large scale refactoring. The basic idea is to build an abstraction layer that 

wraps the part of the system that is to be refactored and the counterpart that is 

eventually going to replace it. For example:  encapsulate field – force code to access 

the field with getter and setter methods, generalize type – create more general types 

to allow for more code sharing, replace type-checking code with state, replace 

conditional with polymorphism, etc.   

   

Composing methods refactoring:  

  

Much of refactoring is devoted to correctly composing methods. In most cases, 

excessively long methods are the root of all evil. The vagaries of code inside these 

methods conceal the execution logic and make the method extremely hard to 

understand and even harder to change. The code refactoring techniques in this group 

streamline methods, remove code duplication. Examples can be: extract method, 



 

 

inline method, extract variable, inline Temp, replace Temp with Query, split 

temporary variable, remove assignments to parameters, etc.  

   

Moving features between objects refactoring:  

  

These code refactoring techniques show how to safely move functionality between 

classes, create new classes, and hide implementation details from public access. For 

example: move method, move field, extract class, inline class, hide delegate, remove 

middle man, introduce foreign method, introduce local extension, etc.  

   

Simplifying conditional expressions refactoring :  

  

Conditionals tend to get more and more complicated in their logic over time, and 

there are yet more techniques to combat this as well. For example: consolidate 

conditional expression, consolidate duplicate conditional fragments, decompose 

conditional, replace conditional with polymorphism, remove control flag, replace 

nested conditional with guard clauses,etc.  

   

Simplifying method calls refactoring:  

  

These techniques make method calls simpler and easier to understand. This 

simplifies the interfaces for interaction between classes. For example: add 

parameter, remove parameter, rename method, separate query from modifier, 

parameterize Method, introduce parameter object, preserve whole object, remove 

setting method, replace parameter with explicit methods, replace parameter with 

method call, etc.  

   



 

 

Breaking code apart into more logical pieces refactoring:  

  

Componentization breaks code down into reusable semantic units that present 

clear, well-defined, simple-to-use interfaces. For example: extract class moves part 

of the code from an existing class into a new class, extract method, to turn part of a 

larger method into a new method. By breaking down code in smaller pieces, it is 

more easily understandable. This is also applicable to functions.  

   

User Interface Refactoring:  

  

A simple change to the UI retains its semantics, for example: align entry field, 

apply common button size, apply font, indicate format, reword in active voice and 

increase color contrast, etc.  

  

Ref: http://crectirupati.com/sites/default/files/lecture_notes/SOFTWARE%20ENGINEERING.pdf 
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